Skip to main content
Log in

Topological aspects of metals in carbon cages: Analogies with organometallic chemistry

  • Physical Chemistry
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Metals can interact with carbon cages in the following ways: (1) stable carbon cages (i.e., fullerenes) function as electronegative olefins in their exohedral η2 bonding to transition metals; (2) endohedral metallofullerenes with a highly electropositive lanthanide (Ln) inside the carbon cage can be considered to be ionic with lanthanide cations, Ln3+, and fullerene anions; (3) fullerenes too small for independent existence can be stabilized by internal covalent bonding to an endohedral metal atom using the central carbon atoms of pentagon triplets,i.e triquinacene, units, in complexes such as M@C28 (M=Ti, Zr, Hf, and U), derived from the tetrahedral fullerene C28; (4) metal atoms can occur as vertices of binary mixed metal-carbon cages in both early transition metal complexes of the types M14C13, M8C12, and M13C22 (e.g., M=Ti) and copper-carbon cages of the types Cu2n +1C2n + (n≤10), Cu7C8 +, Cu9C10 + and Cu12C12 +. The presence of metal atoms as vertices of carbon cages changes radically their stoichiometries and thus their structures. Thus, early transition metals form cages such as Ti14C13 assumed to have titanium atoms at the vertices and face midpoints of a 3×3×3 cube and carbon atoms at the edge midpoints and center of the cube and Ti13C22 assumed to have titanium atoms at the edge midpoints and center of a 3×3×3 cube as well as C2 units and carbon atoms at the vertices and face midpoints, respectively, of the cube. Elimination of the face metal atoms from the Ti14C13 structure as well as the center carbon atom, which has been achieved experimentally by photofragmentation, leads to the Ti8C12 cluster. The structure of this cluster is based on a tetracapped tetrahedron withT d symmetry with two distinct quartets of titanium atoms, six distinct C2 pairs, and 36 direct Ti−C interactions. The copper-carbon cages of various stoichiometries are suggested to have prismatic, antiprismatic, or cuboctahedral structures in which the electronic configurations of the copper atoms approach the favored 18-electron rare gas configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, A. W. Allaf, and S. P. Balm,Chem. Rev., 1991,91, 1212.

    Article  Google Scholar 

  2. F. Diederich and R. L. Whetten,Acc. Chem. Res., 1992,25, 119.

    Article  CAS  Google Scholar 

  3. P. J. Fagan, J. C. Calabrese, and B. Malone,Acc. Chem. Res., 1992,25, 132.

    Article  Google Scholar 

  4. P. J. Fagan, J. C. Calabrese, and B. Malone,Science, 1991,252, 1160.

    CAS  Google Scholar 

  5. A. L. Balch, V. J. Catalano, J. W. Lee, M. M. Olmstead, and S. R. Parkin,J. Am. Chem. Soc., 1991,113, 8953.

    Article  CAS  Google Scholar 

  6. A. L. Balch, L. Hao, and M. M. Olmstead,Angew. Chem., Int. Ed. Engl., 1996,35, 188.

    Article  CAS  Google Scholar 

  7. F. T. Edelmann,Angew. Chem., Int. Ed. Engl., 1995,34, 981.

    Article  CAS  Google Scholar 

  8. Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, and R. E. Smalley,J. Phys. Chem., 1991,95, 7564.

    Article  CAS  Google Scholar 

  9. R. C. Haddon,Acc. Chem. Res., 1992,25, 127.

    Article  CAS  Google Scholar 

  10. T. Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria, and R. E. Smalley,Science, 1992,257, 1661.

    Article  CAS  Google Scholar 

  11. R. E. Davis and P. E. Riley,Inorg. Chem., 1980,19, 674.

    Article  CAS  Google Scholar 

  12. A. Almenningen, A. Haaland, and K. Wahl,Acta Chem. Scand., 1969,23, 1145.

    Article  CAS  Google Scholar 

  13. A. W. Castleman, Jr.,Z. Phys. D, 1993,26, 159.

    Article  CAS  Google Scholar 

  14. B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr.,Science, 1992,255, 1411.

    Article  CAS  Google Scholar 

  15. S. F. Cartier, B. D. May, and A. W. Castleman, Jr.,J. Am. Chem. Soc., 1994,116, 5295.

    Article  CAS  Google Scholar 

  16. H. T. Deng, K. P. Kerns, and A. W. Castleman, Jr.,J. Am. Chem. Soc., 1996,118, 446.

    Article  CAS  Google Scholar 

  17. J. S. Pilgrim and M. A. Duncan,J. Am. Chem. Soc., 1993,115, 9724.

    Article  CAS  Google Scholar 

  18. L. S. Wang and H. Cheng,Phys. Rev. Lett., 1997,78, 2983.

    Article  CAS  Google Scholar 

  19. Y. Yamada and A. W. Castleman, Jr.,Chem. Phys. Lett., 1993,204, 133.

    Article  CAS  Google Scholar 

  20. R. B. King,J. Phys. Chem., 1996,100, 15096.

    Article  CAS  Google Scholar 

  21. R. B. King, inConcepts in Chemistry, Eds. D. H. Rouvray and E. Kirby, Research Studies Press, Ltd., Taunton (England), 1996, 114.

    Google Scholar 

  22. T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite,J. Am. Chem. Soc., 1988,110, 1113.

    Article  CAS  Google Scholar 

  23. X. Liu, T. G. Schmalz, and D. J. Klein,Chem. Phys. Lett., 1992,188, 550.

    Article  CAS  Google Scholar 

  24. N. J. Mansfield, inIntroduction to Topology, Van Nostrand, Princeton (New Jersey), 1963, 40.

    Google Scholar 

  25. B. Grünbaum and T. S. Motzkin,Can. J. Math., 1963,15, 744.

    Google Scholar 

  26. D. J. Klein and X. Liu,J. Math. Chem., 1992,11, 199.

    Article  CAS  Google Scholar 

  27. D. J. Klein and X. Liu,Int. J. Quantum Chem. Symposium, 1994,28, 501.

    Article  CAS  Google Scholar 

  28. C. Milani, C. Giambelli, H. E. Roman, F. Alasia, G. Benedek, R. A. Broglia, S. Sanguinetti, and K. Yabana,Chem. Phys. Lett., 1996,258, 554.

    Article  CAS  Google Scholar 

  29. T. Laidboeur, D. Cabrol-Bass, and O. Ivanciuc,J. Chem. Inf. Comput. Sci., 1996,36, 811.

    Article  CAS  Google Scholar 

  30. K. Zhao and R. M. Pitzer,J. Phys. Chem., 1996,100, 4798.

    Article  CAS  Google Scholar 

  31. M. Bottrill, P. D. Gavens, J. W. Kelland, and J. McMeeking, inComprehensive Organometallic Chemistry, Eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon, Oxford, 1982,3, 459.

    Google Scholar 

  32. P. W. Fowler and J. E. Cremona,J. Chem. Soc., Faraday Trans., 1997,93, 2255.

    Article  CAS  Google Scholar 

  33. A. Sirigu, M. Bianchi, and E. Benedetti,Chem. Comm., 1969, 596.

  34. V. G. Albano, D. Braga, and S. Martinengo,J. Chem. Soc., Dalton Trans., 1986, 981.

  35. R. H. Crabtree,The Organometallic Chemistry of the Transition Metals, 2nd Ed., Wiley-Interscience, New York, 1994.

    Google Scholar 

  36. R. B. King,Izv. Akad. Nauk, Ser. Khim., 1994, 1533 [Russ. Chem. Bull., 1994,43, 1445 (Engl. Transl.)].

  37. R. B. King,J. Organomet. Chem., 1997,536–537, 7.

    Google Scholar 

  38. I. Dance,Chem. Comm., 1992 1779.

  39. I. Dance,J. Am. Chem. Soc., 1996,118, 2699.

    Article  CAS  Google Scholar 

  40. Z. Lin and M. B. Hall,J. Am. Chem. Soc., 1993,115, 11165.

    Article  CAS  Google Scholar 

  41. M. -M. Rohmer, M. Bénard, C. Henriet, C. Bo, and J. -M. Poblet,Chem. Comm., 1993, 1182.

  42. M. -M. Rohmer, M. Bénard, C. Bo, and J. -M. Poblet,J. Am. Chem. Soc., 1995,117, 508.

    Article  CAS  Google Scholar 

  43. W. N. Lipscomb,Science, 1966,153, 373.

    Article  CAS  Google Scholar 

  44. R. B. King,Inorg. Chim. Acta, 1981,49, 237.

    Article  CAS  Google Scholar 

  45. I. Dance,Chem. Comm., 1993, 1306.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 862–869, May, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.B. Topological aspects of metals in carbon cages: Analogies with organometallic chemistry. Russ Chem Bull 47, 833–840 (1998). https://doi.org/10.1007/BF02498149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02498149

Key words

Navigation