Chromatographia

, Volume 50, Issue 11–12, pp 689–694 | Cite as

Flow-through partial-filling affinity capillary electrophoresis for the estimation of binding constants of ligands to receptors

  • E. Mito
  • F. A. Gomez
Originals

Summary

A new approach for estimating binding constants of ligands to receptors, flow-through partial-filling affinity capillary electrophoresis (FTPFACE), is introduced for studying the interaction of carbonic anhydrase B (CAB, EC 4.2.1.1) with arylsulfonamides and vancomycin fromStreptomyces orientalis with D-Ala-D-Ala peptides. In this technique the capillary is first partially-filled with ligand followed by a sample of receptor and non-interacting standards. Upon application of a voltage the receptor and standards flow into the ligand plug where equilibrium is achieved between the receptor and ligand. Continued electrophoresis results in the receptor and standards flowing through the domain of the ligand plug. Analysis of the change in the relative migration time ratio of the receptor, relative to the non-interacting standards, as a function of the concentration of ligand, yields a value for the binding constant. These values are comparable to those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented.

Key Words

Affinity capillary electrophoresis Flow-through partial-filling Binding constants Receptors and ligands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Kawaoka, F. A. Gomez, J. Chromatogr. B715, 203 (1998).Google Scholar
  2. [2]
    X. -H. Qian, K. B. Tomer, Electrophoresis19, 415 (1998).CrossRefGoogle Scholar
  3. [3]
    J. K Abler, K. R. Reddy, C. S. Lee, J. Chromatogr. A759, 139 (1997).CrossRefGoogle Scholar
  4. [4]
    F. B. Erim, J. C. Kraak, J. Chromatogr. B710, 205 (1998).Google Scholar
  5. [5]
    F. A. Gomez, J. N. Mirkovich, V. M. Dominguez, K. W. Liu, D. M. Macias, J. Chromatogr. A727, 291 (1996).CrossRefGoogle Scholar
  6. [6]
    Y. -H. Chu, L. Z. Avila, H. A. Biebuyck, G. M. Whitesides, J. Med. Chem.35, 2915 (1992).CrossRefGoogle Scholar
  7. [7]
    K. Shimura, K. Kasai, Anal. Biochem.251, 1 (1997).CrossRefGoogle Scholar
  8. [8]
    M. Castagnola, I. Measana, D. V. Rossetti, B. Giardina, Ital. J. Biochem.46, 103 (1997).Google Scholar
  9. [9]
    Y. M. Dunayevskiy, Y. V. Lyubarskaya, Y. -H. Chu, P. Vouros, B. L. Karger, J. Med. Chem.41, 1201 (1998).CrossRefGoogle Scholar
  10. [10]
    N. H. H. Heegaard, F. A. Robey, J. Liq. Chromatogr.16, 1923 (1993).Google Scholar
  11. [11]
    F. A. Gomez, L. Z. Avila, Y. -H. Chu, G. M. Whitesides, Anal. Chem.66, 1785 (1994).CrossRefGoogle Scholar
  12. [12]
    X. Zhang, E. W. Davidson, T. H. Nguyen, R. W. Evans, S. J. Im, G. E. Barker, J. Chromatogr. A745, 1 (1996).CrossRefGoogle Scholar
  13. [13]
    D. S. Zhao, E. -S. Kwak, J. Kawaoka, S. Esquivel, F. A. Gomez, Am. Lab.30, 40 (1998).Google Scholar
  14. [14]
    J. J. Colton, J. D. Carbeck, J. Rao, G. M. Whitesides, Electrophoresis19, 367 (1998).CrossRefGoogle Scholar
  15. [15]
    K. Shimura, B. L. Karger, Anal. Chem.66, 9 (1994).CrossRefGoogle Scholar
  16. [16]
    M. Mammen, I. J. Colton, J. D. Carbeck, R. Bradley, G. M. Whitesides, Anal. Chem.69, 2165 (1997).CrossRefGoogle Scholar
  17. [17]
    N. H. H. Heegaard, S. Nilsson, N. A. Guzman, J. Chromatogr. B715, 29 (1998).Google Scholar
  18. [18]
    S. Handwerger, M. Pucci, K. J. Volk, J. Liu, M. S. Lee, J. Bacteriol.176, 260 (1994).Google Scholar
  19. [19]
    Y. -H. Chu, G. M. Whitesides, J. Org. Chem.57, 3524 (1992).CrossRefGoogle Scholar
  20. [20]
    J. Heintz, M. Hernandez, F. A. Gomez, J. Chromatogr. A840, 261 (1999).CrossRefGoogle Scholar
  21. [21]
    H. Kajiwara, Anal. Chim. Acta.383, 61 (1999).CrossRefGoogle Scholar
  22. [22]
    M. H. A. Busch, J. C. Kraak, H. Poppe, J. Chromatogr. A777, 329 (1997).CrossRefGoogle Scholar
  23. [23]
    N. H. H. Heegaard, B. E. Hansen, A. Svejgaard, L. H. Fugger, J. Chromatogr. A781, 91 (1997).CrossRefGoogle Scholar
  24. [24]
    M. Mammen, F. A. Gomez, G. M. Whitesides, Anal. Chem.67, 3526 (1995).CrossRefGoogle Scholar
  25. [25]
    K. Shimura, K. Kasai, Anal. Biochem.227, 186 (1995).CrossRefGoogle Scholar
  26. [26]
    V. A. Vandernoot, R. E. Hileman, J. S. Dordick, R. J. Linhardt, Electrophoresis19, 437 (1998).CrossRefGoogle Scholar
  27. [27]
    Y. -H. Chu, Y. M. Dunayevskiy, D. P. Kirby, P. Vouros, B. L. Karger, J. Am. Chem. Soc.118, 7827 (1996).CrossRefGoogle Scholar
  28. [28]
    M. H. A. Busch, L. B. Carels, H. F. M. Boelens, J. C. Kraak, H. Poppe, J. Chromatogr. A777, 311 (1997).CrossRefGoogle Scholar
  29. [29]
    S. Lin, I. -Y Hsiao, S. -M. Hsu, Anal. Biochem.254, 9 (1997).CrossRefGoogle Scholar
  30. [30]
    Y. -H. Chu, L. Z. Avila, J. Gao, G. M. Whitesides, Acc. Chem. Res.28, 461 (1995).CrossRefGoogle Scholar
  31. [31]
    K. M. Larsen, W. Zimmermann, J. Chromatogr. A836, 3 (1999).CrossRefGoogle Scholar
  32. [32]
    A. Taga, K. Uegaki, Y. Yabusako, A. Kitano, S. Honda, J. Chromatogr. A837, 221 (1999).CrossRefGoogle Scholar
  33. [33]
    M. H. A. Busch, H. F. M. Boelens, J. C. Kraak, H. Poppe, J. Chromatogr. A775, 313 (1997).CrossRefGoogle Scholar
  34. [34]
    Y. Tanaka, S. Terabe, Chromatographia44, 119 (1997).CrossRefGoogle Scholar
  35. [35]
    A. Amini, D. Westerlund, Anal. Chem.70, 1425 (1998).CrossRefGoogle Scholar
  36. [36]
    M. Ge, Z. Chen, H. R. Onishi, J. Kohler, L. L. Silver, R. Kerns, S. Fukuzawa, C. Thompson, D. Kahne, Science284, 507 (1999).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • E. Mito
    • 1
  • F. A. Gomez
    • 1
  1. 1.Department of Chemistry and BiochemistryCalifornia State University, Los AngelesLos AngelesUSA

Personalised recommendations