Advertisement

Chromatographia

, Volume 50, Issue 11–12, pp 641–648 | Cite as

Chromatographic properties of chiral stationary phases based on human serum albumin. Influence of the polymer sublayer

  • M. C. Millot
  • L. Loehman
  • B. Sébille
  • H. Hommel
Originals

Summary

Chiral stationary phases based on human serum albumin were prepared by using a reactive polymer, polyacryloyl chloride, to attach the protein to the silica particles. The retention data of the enantiomers depend on the structure of the polymer sublayer. In most cases, higher selectivity values are observed when the polymer coating is formed by polymerization inside the pores of the silica (in situ polymerization) than with polymer layers deposited by conventional coating methods. This result was attributed to the higher mobility of polymer chains obtained by the former method, which results in lower distortion of the protein after immobilization.

Key Words

Column liquid chromatography Chiral stationary phases Human serum albumin on silica Reactive polymers as protein binding agents Electron Paramagnetic Resonance spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Domenici, C. Bertucci, P. Salvadori, G. Felix, I. Cahagne, S. Motellier, I.W. Wainer, Chromatographia29, 170 (1990)CrossRefGoogle Scholar
  2. [2]
    B. Loun, D. S. Hage, J. Chromatogr.579, 225 (1992)Google Scholar
  3. [3]
    M. C. Millot, B. Sébille, C. Mangin, J. Chromatogr.776, 37 (1997)CrossRefGoogle Scholar
  4. [4]
    N. L. Taleb, M. C. Millot, B. Sébille, J. Chromatogr.776, 45 (1997)CrossRefGoogle Scholar
  5. [5]
    W. Müller, J. Chromatogr.510, 133 (1990).CrossRefGoogle Scholar
  6. [6]
    R. Laible, K. Hamann, Adv. Colloid and Interface Sci.13, 65 (1980)CrossRefGoogle Scholar
  7. [7]
    N. Tsubokawa, T Kimoto, K. Koyoma, Colloid and Polym. Sci.271, 940 (1993)CrossRefGoogle Scholar
  8. [8]
    E. Carlier, A. Guyot, A. Révillon, Reactive Polymers16, 115 (1991/1992)CrossRefGoogle Scholar
  9. [9]
    H. Hommel, Adv. Colloid Interface Sci.54, 209 (1995)CrossRefGoogle Scholar
  10. [10]
    R. C. Schultz, P. Elzer, W. Kern, Makromol. Chem.42, 197 (1960)CrossRefGoogle Scholar
  11. [11]
    L. J. Berliner Ed., Spin Labeling. Theory and Applications, Academic Press, New York 1976Google Scholar
  12. [12]
    D. Kivelson, J. Chem. Phys.33, 1107 (1960)CrossRefGoogle Scholar
  13. [13]
    D. J. Schneider, J. Freed, L. J. Berliner and J. Reuben, Eds., Biological magnetic Resonance Vol.8 Plenum, New York 1989)Google Scholar
  14. [14]
    S. C. Jacobson, G. Guiochon, J. Chromatogr.600, 37 (1992)CrossRefGoogle Scholar
  15. [15]
    S. Allenmark, B. Bomgren, H. Boren, J. Chromatogr.316, 617 (1984)CrossRefGoogle Scholar
  16. [16]
    G. Huhn, H. Müller, J. Chromatogr.640, 57 (1993)CrossRefGoogle Scholar
  17. [17]
    H. Engelhardt, H. Löw, W. Eberhardt, M. Mauss, Chromatographia27, 535 (1989)CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • M. C. Millot
    • 1
  • L. Loehman
    • 1
  • B. Sébille
    • 1
  • H. Hommel
    • 2
  1. 1.Laboratoire de Recherche sur les PolymèresCNRS-Université Paris XIIThiaisFrance
  2. 2.Laboratoire de Physique Quantique, ESA CNRS 7069Ecole Supérieure de Physique et Chimie IndustriellesParis Cedex 05France

Personalised recommendations