Soviet Mining

, Volume 20, Issue 2, pp 86–93 | Cite as

Phenomenological criteria for the strength of brittle materials

  • P. M. Bich
Mechanics of Rocks and Rock Pressure


Cast Iron Brittle Material Gray Cast Iron Stress State Uniformity Triaxial Tension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. D. Del', A. S. Solyanik, and B. P. Chebaevskii, “Determination of limiting loads for a cracked body according materials strength criteria,” Fiz.-Khim. Mekh. Mater., No. 4 (1977).Google Scholar
  2. 2.
    G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials with a Complex Stress State [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  3. 3.
    A. N. Stavrogin, “Statistical bases for strength and deformation of rocks with a complex stress state,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1974).Google Scholar
  4. 4.
    B. Pol', “Macroscopic criteria for plastic flow and brittle failure,” in: Failure [in Russian], Vol. 2, Mir, Moscow (1975).Google Scholar
  5. 5.
    S. E. Chirkov, “Strength of rocks with triaxial unequal compression,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1976).Google Scholar
  6. 6.
    Yu. Ya. Éstrin, “Strength criteria for rocks,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1974).Google Scholar
  7. 7.
    K. V. Ruppeneit, Some Questions of Rock Mechanics [in Russian], Ugletekhizdat, Moscow (1954).Google Scholar
  8. 8.
    A. K. Chernikov, “Failure with a rigid block-punch of a weightless hemiplane and hemispace with an exponential condition for limiting equilibrium,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1980).Google Scholar
  9. 9.
    E. I. Shemyakin, “Two problems of rock mechanics connected with opening up deep ore and coal deposits,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1975).Google Scholar
  10. 10.
    G. A. Geniev, V. N. Krissyuk, and G. A. Tyupin, Elasticity Theory for Concrete and Ferroconcrete [in Russian] Stroizdat, Moscow (1974).Google Scholar
  11. 11.
    P. M. Bich, “Variation of strength theory for concrete,” Beton Zhelezobeton, No. 6 (1980).Google Scholar
  12. 12.
    J. Link et al., “Eine Formulierung des zweiachsigen Bruch- und Verformungsverhaltens von Beton,” Beton Stahlbetonbau, 9 (1974).Google Scholar
  13. 13.
    Yu. Ya. Yagn and V. V. Evstratov, “Strength and ductility of modified cast iron with different stress states,” Dokl. Akad. Nauk SSSR,113, No. 3 (1957).Google Scholar
  14. 14.
    A. Vikario and R. Toland, “Strength criteria and analysis of structural failure,” in: Composite Materials [in Russian], Vol. 7, Mashinostroenie, Moscow (1978).Google Scholar
  15. 15.
    Yu. M. Kartashov, Strength and Deformability of Rocks [in Russian], Nedra, Moscow (1979).Google Scholar
  16. 16.
    G. S. Pisarenko, G. M. Okhrimenko, and Yu. M. Rodichev, “Procedure for testing brittle materials of the glass and glass ceramic types under biaxial compression conditions,” Probl. Prochn., No. 5 (1975).Google Scholar
  17. 17.
    G. S. Pisarenko, G. M. Okhrimenko, and Yu. M. Rodichev, “Resistance of glass and glass ceramic to deformation and failure under biaxial compression conditions,” Probl. Prochn. No. 8 (1977).Google Scholar
  18. 18.
    N. M. Davidenkov and V. A. Yarkov, “Brittle failure with biaxial compression,” Zh. Tekh. Fiz.,25, No. 12 (1955).Google Scholar
  19. 19.
    V. D. Glebov and S. A. Elsuf'ev, “Use of the Moore idea for describing deformation and failure of materials,” Izv. VNIIGidrotekhniki im. B. E. Vedeneeva,82 [in Russian], Énergiya, Leningrad (1966).Google Scholar
  20. 20.
    H. Weigler et al., “Untersuchungen uber Bruch-und Verformungsverhaltens von Beton bei zweiachsiger Beansprung,” Deuts. Ass. Stahlbeton, 157 (1963).Google Scholar
  21. 21.
    A. Mars and S. George, “Determination of biaxial compressive strength of a sintered alumina ceramic,” J. Am. Ceram. Soc.59, No. 7-8 (1976).Google Scholar
  22. 22.
    A. V. Yashin, Yu. A. Vorob'ev and A. M. Fridman, “Experimental studies of graphite deformation mechanisms with biaxial compression,” in: Strength of Materials and Structural Elements with Complex Stress States [in Russian], Naukova Dumka, Kiev (1968).Google Scholar
  23. 23.
    A. V. Dokunin, S. E. Chirkov, and B. K. Norel', Modeling of the Limiting State for Coal Seams [in Russian], Nedra, Moscow (1981).Google Scholar
  24. 24.
    G. N. Kuznetsov and A. V. Isaev, “Universal diagram for the strength of solid rocks,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1982).Google Scholar
  25. 25.
    P. N. Bich, P. G. Chesakov, and V. N. Radyuk., “Testing, of concrete under complex stress conditions,” Beton Zhelezobeton, No. 2 (1978).Google Scholar
  26. 26.
    L. I. Baron and L. G. Kerekelitsa, Resistance of Rocks to Breaking [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  27. 27.
    B. P. Belikov, “Elastic and strength properties of rocks,” in: Study of Physicomechanical Properties of Rocks [in Russian], Vol. 43. Izd. Akad. Nauk SSSR, Moscow (1961).Google Scholar
  28. 28.
    D. D. Ivlev, “Construction of a theory for an ideally plastic body,” Prikl. Mat. Mek.,22, No. 6 (1958).Google Scholar
  29. 29.
    E. I. Shemyakin, “Strength rating for rocks,” in: Measurement of Stresses in Rock Masses [in Russian], Vol. 1, Izd. IGD Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1974).Google Scholar
  30. 30.
    V. S. Nikiforovskii and E. I. Shemyakin, Dynamic Failure of Solids [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  31. 31.
    L. Smith and J. Cheatham, “Plasticity of ice and sand-ice system,” Trans. ASME,97, No. 2 (1975).Google Scholar
  32. 32.
    M. V. Malyshev, “Effect of average principal stress on the strength of soils and on slip surfaces,” Osn. Fundam. Mekh. Gruntov, No. 1 (1963).Google Scholar
  33. 33.
    A. U. Bishop, “Strength parameters with shear of intact and deformed soil specimens,” in: Rules Governing Soil Mechanics, Series Mechanics, Use of Foreign Technology [Russian translation], Mir, Moscow (1975).Google Scholar
  34. 34.
    A. A. Il'yushin, “Increase in plastic strain and surface flow,” Prikl. Mat. Mekh.,24, No. 4 (1960).Google Scholar
  35. 35.
    I. A. Birger, “A criterion for failure and plasticity,” Izd. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4 (1977).Google Scholar
  36. 36.
    V. L. Sverzhevskii and V. N. Subbotin, “Comparson of values for ultimate strength of rock in compression and tension obtained by different methods,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1978).Google Scholar
  37. 37.
    L. M. Sedokov and A. G. Martynenko, “A single contour for the strength of structural materials,” Vestn. Mashinostr., No. 9 (1974).Google Scholar
  38. 38.
    Yu. S. Bogomolov and L. M. Sedokov, “Study of the strength of gray cast iron with radial compression,” Izv. Tomsk. Politekh. Inst., No. 133 (1965).Google Scholar
  39. 39.
    A. B. Fadeev, “Use of the Brazil method for determining the strength of rocks in tension,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1974).Google Scholar
  40. 40.
    Kh. Avadzi and S. Sato, “Methods for testing in diametral compression,” in: Theoretical Bases for Engineering Calculations [in Russian], Proc. ASME, No. 2 (1979).Google Scholar
  41. 41.
    F. MacClintok and A. Argon, Deformation and Failure of Materials [Russian translation], Mir, Moscow (1970).Google Scholar
  42. 42.
    R. Barnett and P. Hermann, “Prior stressing of brittle structures,” in: Failure [in Russian], Vol. 4, Mashinostroenie, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • P. M. Bich

There are no affiliations available

Personalised recommendations