Russian Chemical Bulletin

, Volume 48, Issue 8, pp 1431–1435 | Cite as

Ab initio calculations of activation energy of the reaction of hydrogen exchange on strongly acidic centers

  • Yu. A. Borisov
  • Yu. A. Zolotarev
Physical Chemistry
  • 35 Downloads

Abstract

Ab initio calculations of fragments of the potential energy surfaces of hydrogen exchange reactions between H2, CH4, and alanine molecules and the H3O+ ion were performed by the restricted Hartree-Fock method, at the second-order Møller-Plesset level of perturbation theory, and by the method of coupled clusters using the 6–31G* and aug-cc-pVDZ basis sets. The one-center synchronous mechanism of hydrogen exchange reaction was studied and the activation energies and structures of transition states were determined. It was found that the geometric parameters of the H2 and CH4 molecules in the transition states are close to those of the H3 + and CH5 + ions. The higher the proton affinity of the reacting molecule in the reaction studied the lower the activiation energy of hydrogen exchange. The one-center mechanism studied can be used to describe the high-temperature solid-state catalytic isotope exchange (HSCIE) reaction. The results ofab initio calculations of synchronous hydrogen exchange between the H3O+ ion and hydrogen atoms in different positions of the alanine molecule are in good agreement with experimental data on the regioselectivity and stereoselectivity of the HSCIE reaction with spillover-tritium.

Key words

ab initio quantum-chemical calculations activation energy mechanism of substitution reaction isotope exchange of hydrogen hydrogen spillover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. T. Kerr,J. Catal., 1975,37, 186.CrossRefGoogle Scholar
  2. 2.
    R. M. Barrer and J. Klinowskii,J. Chem. Soc., Faraday Trans. 1, 1975,71, 690.CrossRefGoogle Scholar
  3. 3.
    L. S. Kosheleva,Izv. Akad. Nauk, Ser. Khim., 1995, 236 [Russ. Chem. Bull., 1995,44, 228 (Engl. Transl.)].Google Scholar
  4. 4.
    A. M. Stumbo, P. Grande, and B. Delmon,Studies in Surface Science and Catalysis, 1997,112, 211.CrossRefGoogle Scholar
  5. 5.
    U. Roland, T. Braunschweig, and F. Roessner,J. Mol. Catal., A. Chem., 1997,127, 61.CrossRefGoogle Scholar
  6. 6.
    P. A. Sermon,Catal. Rev., 1973,8, 211.Google Scholar
  7. 7.
    K. I. Zamaraev,Usp. Khim., 1993,62, 1051 [Russ. Chem. Rev., 1993,62 (Engl. Transl.)].Google Scholar
  8. 8.
    E. M. Evleth, E. Kassab, and L. R. Sierra,J. Phys. Chem., 1994,98, 1421.CrossRefGoogle Scholar
  9. 9.
    Yu. A. Borisov, Yu. A. Zolotarev, E. V. Laskatelev, and N. F. Myasoedov,Izv. Akad. Nauk, Ser. Khim., 1996, 1852 [Russ. Chem. Bull., 1996,45, 1764 (Engl. Transl.)].Google Scholar
  10. 10.
    C. Møller and S. Plesset,Phys. Rev., 1934,46, 618.CrossRefGoogle Scholar
  11. 11.
    J. Cizek,Adv. Chem. Phys., 1969,14, 35.Google Scholar
  12. 12.
    T. H. Dunning, Jr.,J. Chem. Phys., 1989,90, 1007.CrossRefGoogle Scholar
  13. 13.
    C. Peng and H. B. Schlegel,Isr. J. Chem., 1993,33, 449.Google Scholar
  14. 14.
    M. J. Frish, J. B. Foresman, and A. Frisch,GAUSSIAN 94. User's Reference, Gaussian Inc., Pittsburgh (PA), 1996.Google Scholar
  15. 15.
    M. Dupius, D. Spangler, and J. J. Wendolowski,Nat. Resour. Comput. Chem. Software Cat. l. Prog. QG01 (GAMESS), 1980.Google Scholar
  16. 16.
    J. W. M. Carneiro, P. R. Schleyer, M. Saunders, R. Remington, H. F. Schaerfer A. Rauic, and T. S. Sorensen,J. Am. Chem. Soc., 1994,116, 3483.CrossRefGoogle Scholar
  17. 17.
    S. G. Lias, J. F. Liberman, J. L. Holmes, R. D. Levin, and W. G. Mallard,J. Phys. Chem. Ref. Data Suppl., 1988, 17.Google Scholar
  18. 18.
    J. E. Szulejko and T. B. McMahon,J. Am. Chem. Soc., 1993,115, 7839.CrossRefGoogle Scholar
  19. 19.
    Yu. A. Zolotarev, V. S. Kozik, D. A. Zaitsev, E. M. Dorokhova, and N. F. Myasoedov,Dokl. Akad. Nauk, 1989,308, 1146 [Dokl. Chem., 1989 (Engl. Transl.)].Google Scholar
  20. 20.
    Yu. A. Zolotarev, E. M. Dorokhova, V. N. Nezavibatko, Yu. A. Borisov, S. G. Rosenberg, and N. F. Myasoedov,Amino Acids, 1995,8, 353.CrossRefGoogle Scholar
  21. 21.
    R. Levy and M. Boudart,J. Catal., 1974,32, 304.CrossRefGoogle Scholar
  22. 22.
    Yu. A. Zolotarev, E. V. Laskatelev, V. S. Kozik, E. M. Dorokhova, Yu. A. Borisov, and N. F. Myasoedov,Izv. Akad. Nauk, Ser. Khim., 1997, 757 [Russ. Chem. Bull., 1997,46, 726 (Engl. Transl.)].Google Scholar
  23. 23.
    C. J. Cassady, S. R. Carr, K. Zhang, and A. Chungphillips,J. Org. Chem., 1995,60, 1704.CrossRefGoogle Scholar
  24. 24.
    S. G. Stepanian, I. D. Reva, E. D. Radchenko, and L. Adamowicz,J. Phys. Chem., 1998,102, 4623.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Yu. A. Borisov
    • 1
  • Yu. A. Zolotarev
    • 2
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations