Russian Chemical Bulletin

, Volume 49, Issue 7, pp 1185–1194 | Cite as

Highly active three-component catalytic systems based on dialkylzirconocenes, triisobutylaluminum, and perfluorophenyl borates for synthesis of low-molecular-weight polyethylene

  • A. N. Panin
  • I. L. Dubnikova
  • N. M. Bravaya
Physical Chemistry


The catalytic properties of the zirconium complex with “constrained geometry” Me2SiCp*NBu1ZrX2 (Cp*=C5Me4, X=Cl (1a), Me (1b)) and bridged bis(cyclopentadienyl)zirconocene Me2SiCp2ZrX2 (X=Cl (2a), Me (2b)) during their activation with triisobutylaluminum/perfluorophenyl borates (TIBA/LB(C6F5)4, L=CPh3 (3), Me2HNPh (4)) in ethylene polymerization under a monomer pressure of 2–20 atm were studied by comparison. Both dichloride complexes exhibit moderate activity under the action of the combined TIBA/3 activating agent and give linear high-molecular-weight polyethylene (PE). The interaction of the dimethyl complexes with TIBA/3(4) afford active sites in which the growing polymeric chain is intensely transferred to the monomer, due to which low-molecular-weight PE is formed. The dichloride complexes affected by TIBA/4 also afford low-molecular-weight PE. Analysis of the structure of the polymeric products (1H NMR spectrometry, IR spectroscopy), molecular-weight parameters of the PE samples (gel permeation chromatography (GPC)), and kinetics of polymerization suggested that the active site contains AlBui 3 as a heteronuclear bridged cationic complex. The influence of various basic substrates (the products of chain transfer with the terminal vinyl groups, the dimethylaniline fragment of borate4 or other amine specially introduced into the reaction mixture) on the catalytic properties of the Zr−Al site was revealed. The polymerization rate and molecular-weight parameters of PE as functions of the reaction temperature, ethylene pressure, and modifying additives were studied.

Key words

metallocene catalysts ethylene polymerization ethylene oligomerization polymerization kinetics active site perfluorophenyl borates triisobutylaluminum polyethylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Sishta, R. M. Hathorn, and T. J. Marks,J. Am. Chem. Soc., 1992,114, 1112.CrossRefGoogle Scholar
  2. 2.
    G. G. Hlatky, H. W. Turner, and R. R. Eckman,J. Am. Chem. Soc., 1989,111, 2728.CrossRefGoogle Scholar
  3. 3.
    X. Yang, C. L. Stern, and T. J. Marks,J. Am. Chem. Soc., 1991,113, 3623.CrossRefGoogle Scholar
  4. 4.
    Y.-X. Chen, C. L. Stern, and T. J. Marks,J. Am. Chem. Soc., 1997,119, 2582.CrossRefGoogle Scholar
  5. 5.
    J. C. W. Chien, W. Song, and M. D. Rausch,J. Polym. Sci., Part A: Polym. Chem., 1994,32, 2387.CrossRefGoogle Scholar
  6. 6.
    W.-M. Tsai and J. C. W. Chien,J. Polym. Sci., Part A: Polym. Chem., 1994,32, 149.CrossRefGoogle Scholar
  7. 7.
    Y.-X. Chen, M. D. Rausch, and J. C. W. Chien,J. Polym. Sci., Part A: Polym. Chem., 1995,33, 2093.CrossRefGoogle Scholar
  8. 8.
    N. Naga and K. Mizunuma,Polymer, 1998,39, 5059.CrossRefGoogle Scholar
  9. 9.
    G. Luft, R. A. Dyroff, C. Götz, S. Schmitz, T. Wieczorek, R. Klimesch, and A. Gonioukh,Metalorganic Catalysts for Synthesis and Polymerization, Ed. W. Kaminsky, Springer, Berlin, 1999, p. 651.Google Scholar
  10. 10.
    S. Liu, G. Yu, and B. Huang,J. Appl. Polym. Sci., 1997,66, 1715.CrossRefGoogle Scholar
  11. 11.
    I. Kim and C. S. Choi,J. Polym. Sci., Part A: Polym. Chem., 1999,37, 1523.CrossRefGoogle Scholar
  12. 12.
    I. Kim,J. Appl. Polym. Sci., 1999,71, 875.CrossRefGoogle Scholar
  13. 13.
    A. N. Panin, O. N. Babkina and N. M. Bravaya,Izv. Akad. Nauk, Ser. Khim., 2000, 301 [Russ. Chem. Bull., 2000,49, (Engl. Transl.)].Google Scholar
  14. 14.
    K. Teranishi and K. Sugahara,Kobunshi Kagaku, 1966,23, 512.Google Scholar
  15. 15.
    R. Blom, A. Follestad, and O. Noel,J. Mol. Catal., 1994,91, 237.CrossRefGoogle Scholar
  16. 16.
    J. C. Randall,JMC-Rév. Macromol. Chem. Phys., 1989,C29, 201.Google Scholar
  17. 17.
    N. M. Bravaya, V. V. Strelets, Z. M. Dzhabieva, O. N. Babkina, and V. P. Mar'in,Izv. Akad. Nauk, Ser. Khim., 1998, 1535 [Russ. Chem. Bull., 1998,47, 1491 (Engl. Transl.)].Google Scholar
  18. 18.
    M. Bochmann and S. J. Lancaster,Angew. Chem., Int. Ed. Engl., 1994,33, 1634.CrossRefGoogle Scholar
  19. 19.
    M. Bochmann,Topics in Catalysis, 1999,7, 9.CrossRefGoogle Scholar
  20. 20.
    J. C. Stevens,Studies in Surface Science and Catalysis. Elsevier, Amsterdam, 1996,101, 11.Google Scholar
  21. 21.
    W. Kaminsky and S. Lenk,Macromol. Symp., 1997,118, 45.Google Scholar
  22. 22.
    A. R. Siedle, W. M. Lamanna, R. A. Newmark, and J. N. Schroepfer,J. Mol. Catol., A: Chem., 1998,128, 257.CrossRefGoogle Scholar
  23. 23.
    T. K. Woo, L. Fan, and T. Ziegler,Organometallics, 1994,13, 2252.CrossRefGoogle Scholar
  24. 24.
    J. Koivumaki and J. V. Seppala,Polymer, 1993,34, 1958.CrossRefGoogle Scholar
  25. 25.
    K. J. Chu and T. H. Park, 1997,31, 11.Google Scholar
  26. 26.
    P. Peitikainen and J. V. Seppala,Macromolecules, 1994,27, 1325.CrossRefGoogle Scholar
  27. 27.
    C. Hansch and A. J. Leo,Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York. 1979.Google Scholar
  28. 28.
    J. Sangster,J. Phys. Chem. Ref., 1989,18, 1111.CrossRefGoogle Scholar
  29. 29.
    T. Fujita, J. Iwasa, and C. Hansch,J. Am. Chem. Soc., 1964,86, 5175.CrossRefGoogle Scholar
  30. 30.
    M. Ystenes,Makromol. Chem. Makromol. Symp., 1993,66, 71.Google Scholar
  31. 31.
    M. H. Prosenc, F. Schaper, and H. H. Brintzinger,Metalorganic Catalysts for Synthesis and Polymerization, Ed. W. Kaminsky, Springer, Berlin, 1999, p. 223.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. N. Panin
    • 1
  • I. L. Dubnikova
    • 1
  • N. M. Bravaya
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation

Personalised recommendations