Russian Chemical Bulletin

, Volume 49, Issue 4, pp 674–679 | Cite as

Non-ideal properties of the TRIS—TRIS·HCl−NaCl−H2O buffer system in the 0–40 °C temperature interval. Application of the pitzer equations

  • P. Ya. Tishchenko
Physical Chemistry


The buffer solution TRIS—TRIS·HCl−NaCl−H2O was studied in the 0–40 °C temperature region and ionic strength interval of (0.1–4)m (m is molality) by the e.m.f. method using two types of cells without liquid junction composed of platinum-hydrogen, silverchloride, and sodium-glass electrodes. For temperatures of 5 and 15 °C and the (1–4)m concentration region, the osmotic coefficients of the TRIS·HCl−H2O solutions were measured by the isopiestic method. The results were processed in the framework of the Pitzer method, and the parameters of interaction of the components of the buffer system were calculated. The associative character of the interactions in the TRIS·HCl−H2O solution was shown.

Key words

acid-base equilibrium Pitzer method activity coefficients of TRIS—TRIS·HCl−NaCl osmotic coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Pitzer,Report to a Group at the National Institute of Standards and Technology (December, 1988), 1988.Google Scholar
  2. 2.
    K. G. Knauss, T. J. Wolery, and K. J. Jackson,Geochim. Cosmochim. Acta. 1990,54, 1519.CrossRefGoogle Scholar
  3. 3.
    R. E. Mesmer and H. F. Holms,J. Soln. Chem., 1992,21, 725.CrossRefGoogle Scholar
  4. 4.
    A. K. Covington and M. L. Ferra,J. Soln. Chem., 1994,23, 1.CrossRefGoogle Scholar
  5. 5.
    C.-Y. Chan, Y.-W. Eng, and K.-S. Eu,J. Chem. Eng. Data, 1995,40, 685.CrossRefGoogle Scholar
  6. 6.
    P. Ya. Tishchenko,Zh. Fiz. Khim., 1998,72, 1059 [Russ. J. Phys. Chem., 1998,72 (Engl. Transl.)].Google Scholar
  7. 7.
    K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data, 1984,13, 1.CrossRefGoogle Scholar
  8. 8.
    J. M. Simonson, R. N. Roy, L. N. Roy, and D. A. Johnson,J. Soln. Chem., 1987,16, 791.CrossRefGoogle Scholar
  9. 9.
    K. S. Pitzer,Ion Interaction Approach: Theory and Data Correlation, inActivity Coefficients in Electrolyte Solutions, 2nd Ed., CRC Press, Boca Raton, Ann Arbor, Boston, London, 1991, p. 75.Google Scholar
  10. 10.
    R. A. Robinson and V. E. Bower,J. Chem. Eng. Data, 1965,10, 246.CrossRefGoogle Scholar
  11. 11.
    R. G. Bates and H. B. Hetzer,J. Phys. Chem., 1961,65, 667.Google Scholar
  12. 12.
    M. Izaguirre and F. Millero,J. Soln. Chem., 1987,16, 827.CrossRefGoogle Scholar
  13. 13.
    S. P. Datta, A. K. Grzybowski, and B. A. Weston,J. Chem. Soc.,1963, 792.Google Scholar
  14. 14.
    D. J. G. Ives and G. J. Janz, inReference Electrodes. Academic Press, New York-London, 1961, p. 189.Google Scholar
  15. 15.
    G. Ojelund and I. Wadso,Acta Chem. Scand., 1968,22, 2691.CrossRefGoogle Scholar
  16. 16.
    F. J. Millero, J. P. Hershey, and M. Fernandez,Geochim. Cosmochim. Acta, 1987,51, 707.CrossRefGoogle Scholar
  17. 17.
    R. E. Benesch and R. Benesch,J. Am Chem. Soc., 1955,77, 2749.CrossRefGoogle Scholar
  18. 18.
    R. A. Robinson and H. S. Harned,Chem. Revs., 1941,28, 419.CrossRefGoogle Scholar
  19. 19.
    R. M. Diamond,J. Am. Chem. Soc., 1958,80, 4808.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • P. Ya. Tishchenko
    • 1
  1. 1.Pacific Oceanological InstituteFar-Eastern Branch of the Russian Academy of SciencesVladivostokRussian Federation

Personalised recommendations