Advertisement

Russian Chemical Bulletin

, Volume 49, Issue 4, pp 609–619 | Cite as

Calculations of the distribution of trace impurities in cylindrical pores

  • Yu. K. Tovbin
  • E. V. Votyakov
Physical Chemistry
  • 32 Downloads

Abstract

The equilibrium distribution of a trace impurity and the self-diffusion coefficients of molecules of the base component and the trace impurity in narrow cylindrical pores were calculated using the lattice-gas model. Two types of lattice structures with six and eight closest neighbors were considered. The sizes of the base component and impurity molecules were taken to be identical. Lateral interactions were taken into account in the quasi-chemical approximation. The equilibrium distributions of the trace impurity across a pore section in the gas and liquid phases of the base component and at the interface for the case of capillary condensation were considered. The probability of existence of isolated dimeric clusters was estimated and the self-diffusion coefficients of the base component and trace impurity for a single-phase distribution of the base component were calculated. The effects of the energy of interaction of impurities with the pore walls and the concentration of the base component on the diffusion mobility of the impurities were analyzed. The concentration dependences of the partition coefficient for the trace impurity between the pore center and the pore wall and the concentration dependences of the self-diffusion coefficients for the trace impurity molecules become nonmonotonic with an increase in the base component concentration. These effects are due to the displacement of the impurity from the near-surface area to the bulk of a pore following an increase in the pore coverage by the base component and to higher mobility of the impurity in the free bulk of the pore. Further filling of the pore bulk reduces the mobility of all molecules. The energetics of intermolecular interactions also plays a certain role.

Key words

cylindrical pores adsorption trace impurity phase interface clusters self-diffusion coefficient lattice-gas model quasi-chemical approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Ruthven,Principles of Adsorption and Adsorption Processes, J. Wiley, New York, 1984.Google Scholar
  2. 2.
    S. F. Timashev,Fiziko-khimiya membrannykh protsessov [Physical Chemistry of Membrane Processes], Khimiya, Moscow, 1988, 237 pp. (in Russian).Google Scholar
  3. 3.
    T. A. Kuznetsova, A. E. Sigaeva, and A. M. Tolmachev,Vestn. Mosk. Univ., Ser. Khimiya, 1988,29, 43 [Bull. Mosc. Univ., 1988 (Engl. Transl.)].Google Scholar
  4. 4.
    M. F. Gilyazov, A. A. Lopatkin, and A. M. Tolmachev,Vysokochistye Veshchestva, 1987, No. 6, 40; 48 [High-Purity Substances, 1987, No. 6 (Engl. Transl.)].Google Scholar
  5. 5.
    Yu. K. Tovbin, M. F. Gilyazov, and A. M. Tolmachev,Vysokochistye Veshchestva, 1990, No. 1, 76; 83 [High-Purity Substances, 1990, No. 1 (Engl. Transl.)].Google Scholar
  6. 6.
    S. J. Gregg and K. S. W. Sing,Adsorption, Surface Area, and Porosity, Academic Press, London, 1982.Google Scholar
  7. 7.
    A. V. Kiselev,Mezhmolekulyarnye vzaimodeistviya v adsorbtsii i khromatografii [Intermolecular Interactions in Adsorption and Chromatography], Vysshaya Shkola, Moscow, 1986, 360 pp (in Russian).Google Scholar
  8. 8.
    M. E. Fisher and H. Nakanishi,J. Chem. Phys., 1981,75, 5857.CrossRefGoogle Scholar
  9. 9.
    H. Nakanishi and M. E. Fisher,J. Chem. Phys., 1983,78, 3279.CrossRefGoogle Scholar
  10. 10.
    P. Tarasona, U. M. B. Marconi, and R. Evans,Mol. Phys., 1987,60, 573.CrossRefGoogle Scholar
  11. 11.
    E. Bruno, U. M. B. Marconi, and R. Evans,Physica A, 1987,141, 187.CrossRefGoogle Scholar
  12. 12.
    A. de Kreizer, T. Michalski, and G. H. Findenegg,Pure Appl. Chem., 1991,63, 1495.Google Scholar
  13. 13.
    Yu. K. Tovbin and E. V. Votyakov,Langmuir, 1993,9, 2652.CrossRefGoogle Scholar
  14. 14.
    E. V. Votyakov and Yu. K. Tovbin,Zh. Fiz. Khim., 1994,68, 287 [Russ. J. Phys. Chem., 1994,68 (Engl. Transl.)].Google Scholar
  15. 15.
    D. V. Fedoseev, R. K. Chuzhko, and A. G. Grivtsov, inGeterogennaya kristallizatsiya iz gazovoi fazy [Heterogeneous Crystallization from the Gas Phase], Nauka, Moscow, 1978, p. 60 (in Russian).Google Scholar
  16. 16.
    D. Nicolson and N. G. Parsonage,Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press, New York, 1982.Google Scholar
  17. 17.
    E. N. Brodskaya and E. M. Piotrovskaya,Rasplavy [Melts], 1988,2, 29 (in Russian).Google Scholar
  18. 18.
    Yu. K. Tovbin, inMetod molekulyarnoi dinamiki v fizicheskoi khimii [Molecular Dynamics Method in Physical Chemistry], Nauka, Moscow, 1996, p. 128 (in Russian).Google Scholar
  19. 19.
    Yu. K. Tovbin,Theory of Physicochemical Processes at the Gas-Solid Interface, CRC Press, Boca Raton, Fl., 1991.Google Scholar
  20. 20.
    Yu. K. Tovbin,Progress in Surfaces Sci., 1990,34, 1.CrossRefGoogle Scholar
  21. 21.
    Yu. K. Tovbin,Langmuir, 1997,13, 979.CrossRefGoogle Scholar
  22. 22.
    Yu. K. Tovbin and T. V. Petrova,Zh. Fiz. Khim., 1995,70, 127 [Russ. J. Phys. Chem., 1995,70 (Engl. Transl.)].Google Scholar
  23. 23.
    E. V. Votyakov, Yu. K. Tovbin, J. M. D. Macelroy, and A. Roche,Langmuir, 1999,15, 5713.CrossRefGoogle Scholar
  24. 24.
    Yu. K. Tovbin,Zh. Fiz. Khim., 1998,72, 2280 [Russ. J. Phys. Chem., 1998,72 (Engl. Transl.)].Google Scholar
  25. 25.
    Yu. K. Tovbin and E. V. Votyakov,Zh. Fiz. Khim., 1993,67, 2126 [Russ. J. Phys. Chem., 1993,67 (Engl. Transl.)].Google Scholar
  26. 26.
    Yu. K. Tovbin and E. V. Votyakov,Zh. Fiz. Khim., 1998,72, 1885 [Russ. J. Phys. Chem., 1998,72 (Engl. Transl.)].Google Scholar
  27. 27.
    T. L. Hill,Statistical Mechanics: Principles and Selected Applications, McGraw-Hill, New York, 1956.Google Scholar
  28. 28.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, J. Wiley and Sons, New York, 1954.Google Scholar
  29. 29.
    O. Yu. Batalin, Yu. K. Tovbin, and V. K. Fedyanin,Zh. Fiz. Khim., 1980,53, 3020 [Russ. J. Phys. Chem., 1980,53, (Engl. Transl.)].Google Scholar
  30. 30.
    W. A. Steele,The Interactions of Gases with Solid Surfaces, Pergamon, New York 1974.Google Scholar
  31. 31.
    Yu. K. Tovbin,Dokl. Akad. Nauk SSSR, 1990,312, 918 [Dokl. Chem., 1990 (Engl. Transl.)].Google Scholar
  32. 32.
    Yu. K. Tovbin, V. N. Komarov, and N. F. Vasyutkin,Zh. Fiz. Khim., 1999,73, 500 [Russ. J. Phys. Chem., 1999,73 (Engl. Transl.)].Google Scholar
  33. 33.
    D. M. Pfund, L. L. Lee, and H. D. Cochran,J. Chem. Phys., 1991,94, 3114.CrossRefGoogle Scholar
  34. 34.
    R.-S. Wu, L. L. Lee, and H. D. Cochran,Ind. Eng. Chem. Res., 1990,29, 977.CrossRefGoogle Scholar
  35. 35.
    A. A. Chialo and P. G. Debenedetti,Ind. Eng. Chem. Res., 1992,31, 1391.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • Yu. K. Tovbin
    • 1
  • E. V. Votyakov
    • 1
  1. 1.State Research Center of the Russian Federation “L. Ya. Karpov Institute of Physical Chemistry”MoscowRussian Federation

Personalised recommendations