Skip to main content
Log in

Formation of antiferromagnetic thiolate-bridged and sulfide-bridged complexes

5. Interactions of phosphinehalide complexes of ReI and PdII with antiferromagnetic Cp2Cr2(SCMe3)2S and diamagnetic Fe3S2(CO)9 compounds

  • Organometallic Chemistry
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Reactions of Cp2Cr2(SCMe3)2S (1) with rhenium complexes (CO)(NO)Re(PR3)2X2 [R=Et, X=Cl (7a); R=Et, X=O3SCF3 (7b); R=OMe, X=O3SCF3 (7c)] containing strongly bound phosphine ligands and with Pd(PPri 3)2Cl2 (8) containing bulky P donors were studied. The reaction between compounds1 and7a does not occur in various solvents within a temperature range of 22–80 °C. Interaction of1 with triflat derivatives7b and7c yields the paramagnetic tetrahedral homonuclear cationic cluster Cp4Cr4S4 +O3SCF3 (10) and the binuclear methylated complex Cp2Cr2(SCMe3)2(SMe)+O3SCF3 (11), respectively. The reaction of compound1 with8 affords the antiferromagnetic heteronuclear cluster Cp2Cr2(SCMe3)S2PdCl(PPri 3) (12). The structure of the core of12 is analogous to the structures of the rhodium-containing complexes Cp2Cr2(μ-SCMe3)(μ3-S)2RhL2. Although compound8 reacts with Fe3S2(CO)9 (5), the major products are the homometallic trinuclear clusters Fe3S2(CO)8(PPri 3) (14) (as a mixture of isomers) and Fe3S2(CO)7(PPri 3)2 (15), whereas the heteronuclear complex (CO)6Fe2S2Pd(PPri 3)2 (16) was found only in trace amounts. The reasons for the difference in the reactivities of the rhenium and palladium derivatives toward compounds1 and5 are discussed. The structures of complexes10 (two crystal modifications),11, 12, 15, and16 were established by X-ray structural analysis of the single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Eremenko, H. Berke, B. I. Kolobkov, and V. M. Novotortsev,Organometallics, 1994,13, 244.

    Article  CAS  Google Scholar 

  2. I. L. Eremenko, H. Berke, A. A. H. van der Zejden, and V. M. Novotortsev,J. Organomet. Chem., 1994,471, 123.

    Article  CAS  Google Scholar 

  3. A. A. Pasynskii, I. L. Eremenko, G. Sh. Gasanov, O. G. Ellert, V. M. Novotortsev, Yu. V. Rakitin, T. Kh. Kurbanov, V. T. Kalinnikov, Yu. T. Struchkov, and V. E. Shklover,Polyhedron, 1984,3, 775.

    Article  CAS  Google Scholar 

  4. A. A. Pasynskii, B. I. Kolobkov, I. L. Eremenko, S. E. Nefedov, S. B. Katser, and M. A. Porai-Koshits,Zh. Neorg. Khim., 1992,37, 563 [Russ. J. Inorg. Chem., 1992,37 (Engl. Transl.)].

    CAS  Google Scholar 

  5. A. A. Pasynskii, I. L. Eremenko, Yu. V. Rakitin, V. M. Novotortsev, V. T. Kalinnikov, G. G. Aleksandrov, and Yu. T. Struchkov,J. Organomet. Chem., 1979,165, 57.

    Article  CAS  Google Scholar 

  6. D. Veghini and H. Berke,Chimia, 1993,47, 284.

    Google Scholar 

  7. W. Chen, L. Y. Goh, R. F. Bryan, and E. Sinn,Acta Crystallogr., 1986,C42, 796.

    Google Scholar 

  8. A. A. Pasynskii, I. L. Eremenko, A. S. Katugin, S. E. Nefedov, G. Sh. Gasanov, B. Orazsakhatov, O. G. Ellert, V. E. Shklover, and Yu. T. Struchkov,Metalloorg. Khim., 1988,1, 172 [Organomet. Chem. USSR, 1988,1 (Engl. Transl.)].

    CAS  Google Scholar 

  9. P. D. Williams and M. D. Curtis,Inorg. Chem., 1986,25, 4562.

    Article  CAS  Google Scholar 

  10. Yu. L. Slovokhotov, M. Yu. Antipin, R. G. Gerr, A. I. Yanovsky, and Yu. T. Struchkov,Dokl. Akad. Nauk SSSR, 1985,285, 1413 [Dokl. Chem., 1985,285 (Engl. Transl.)].

    CAS  Google Scholar 

  11. M. Yu. Antipin, Yu. L. Slovokhotov, and Yu. T. Struchkov,Dokl. Akad. Nauk SSSR, 1987,287, 1143 [Dokl. Chem., 1987,287 (Engl. Transl.)].

    Google Scholar 

  12. J. H. van Vleck,The Theory of Electronic and Magnetic Susceptibilities, Oxford University Press, London, 1932.

    Google Scholar 

  13. Yu. V. Rakitin and V. T. Kalinnikov,Sovremennaya magnetokhimiya [Modern Magnetochemistry], Nauka, St. Petersburg, 1994, (in Russian).

    Google Scholar 

  14. A. A. Pasynskii, I. L. Eremenko, B. Orzsakhatov, Yu. V. Rakitin, V. M. Novotortsev, O. G. Ellert, and V. T. Kalinnikov,Inorg. Chem. Acta, 1988,39, 91.

    Article  Google Scholar 

  15. A. A. Pasynskii, I. L. Eremenko, V. R. Zalmanovich, V. V. Kaverin, B. Orazsakhatov, V. M. Novotortsev, O. G. Ellert, A. I. Yanovsky, and Yu. T. Struchkov,J. Organomet. Chem., 1988,356, 57.

    Article  CAS  Google Scholar 

  16. A. A. Pasynskii, I. L. Eremenko, V. V. Zalmanovich, V. V. Kaverin, B. Orazsakhatov, S. E. Nefedov, A. I. Yanovsky, and Yu. T. Struchkov,J. Organomet. Chem., 1991,414, 55.

    Article  CAS  Google Scholar 

  17. C. A. Tolman,Chem. Rev., 1977,77, 331.

    Article  Google Scholar 

  18. C. H. Wei and L. F. Dahl,Inorg. Chem., 1965,4, 493.

    Article  CAS  Google Scholar 

  19. S. Aime, L. Milone, R. Rosetti, and P. L. Stanghellini,J. Chem. Soc., Dalton Trans., 1980, 46.

  20. N. Walker and D. Stuart,Acta Crystallogr., 1983,A39, 158.

    CAS  Google Scholar 

  21. G. M. Sheldrick, inCrystallographic Computing 3. Data Collection, Structure Determination, Proteins and Databases, New York, 1985, 175.

Download references

Author information

Authors and Affiliations

Authors

Additional information

For Part 4, see I. L. Eremenko, S. E. Nefedov, H. Berke, B. I. Kolobkov, and V. M. Novotortsev,Organometallics, 1995,14, 1132.

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 141–152, January, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremenko, I.L., Nefedov, S.E., Veghini, D.A. et al. Formation of antiferromagnetic thiolate-bridged and sulfide-bridged complexes. Russ Chem Bull 46, 137–148 (1997). https://doi.org/10.1007/BF02495363

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02495363

Key words

Navigation