Skip to main content
Log in

Quantitation of verapamil and norverapamil in postmortem and clinical samples using liquid-liquid extraction, solid phase extraction, and HPLC

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Verapamil is a calcium channel blocking drug often prescribed to treat hypertension. The increase in verapamil prescriptions has led directly to an increase in overdoses, both intentional and accidental. The aim of this study was to develop a simple, fast and sensitive HPLC method with fluorescence detection for the quantitation of verapamil and its major metabolite norverapamil in postmortem samples. This study compared liquid-liquid and solid phase (C2 silica) extraction techniques for quantitation of verapamil and norverapamil in postmortem blood, liver and kidney. The method was also applied to a blood sample collected in the emergency room from a patient suffering from a verapamil overdose. The experiment established a five-point standard curve that crossed both therapeutic and fatal concentrations of verapamil and norverapamil (100 to 3,000 ng mL−1 for blood and 100 to 3,000 ng g−1 for tissues). The standard curves were linear over the range of verapamil and norverapamil concentrations assayed and had correlation coefficients greater than 0.9784±0.0198 for both liquid-liquid and solid phase extractions. The limit of quantitation for verapamil and norverapamil in all specimens studied was established to be 100 ng mL−1 and 100 ng g−1. Intra-day variability was determined using 3–6 replicates of controls (2,500 ng mL−1 of blood or 2,500 ng g−1 of tissue homogenate) prepared in naive blood and tissues and analyzed on a single day. Inter-day variability was determined over a four day period analyzing replicates of controls. Control solutions prepared in naive blood, kidney and liver homogenates in the fatal concentration levels fell within the acceptable precision and accuracy range. Furthermore, liquid-liquid extraction is preferable to solid phase extraction for quantitation of verapamil and norverapamil in tissues because it is simpler, more versatile, more precise, more accurate and less expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. McTavish, E. M. Sorkin, Drugs38, 19 (1989).

    CAS  Google Scholar 

  2. P. D. Pearingen, N. L. Benowitz, Drug Safety6, 408 (1991).

    Article  Google Scholar 

  3. B. Z. Horowitz, K. J. Rhee, Am. J. Em. Med.7, 624 (1989).

    Article  CAS  Google Scholar 

  4. A. R. Shah, B. R. Passalacqua, Am. J. Med. Sci.304, 357 (1992).

    CAS  Google Scholar 

  5. K. M. Giacomini, N. Massoud, F. M. Wong, J. C. Giacomini, J. Cardiovasc. Pharmacol.6, 924 (1984).

    CAS  Google Scholar 

  6. J. Vlcek, K. Macek, P. Hulek, M. Bratova, Z. Fendrich, Arzneim.-Forsch./Drug Res.45, 146 (1995).

    CAS  Google Scholar 

  7. R. A. Minella, D. S. Schulman, Am. Heart J.121, 1810 (1991).

    Article  CAS  Google Scholar 

  8. H. P. Gelbke, H. J. Schicht, G. C. Schmidt, Arch. Toxicol.37, 88 (1977).

    Google Scholar 

  9. L. T. F. Chan, L. H. Chhuy, R. J. Crowley, J. Chromatogr.402, 361 (1987).

    Article  CAS  Google Scholar 

  10. C. A. Hofer, J. K. Smith, M. F. Tenholder, Am. J. Med.95, 431 (1993).

    Article  CAS  Google Scholar 

  11. H. A. Spiller, A. Meyers, T. Ziemba, M. Riley, Ann. Em. Med.20, 201 (1991).

    Article  CAS  Google Scholar 

  12. S. M. Watling, J. L. Crain, T. D. Edwards, R. L. Stiller, Ann. Pharmacol.26, 1373 (1992).

    CAS  Google Scholar 

  13. D. MacDonald, P. C. Alguire, Am. J. Med. Sci. 303,115 (1992).

    CAS  Google Scholar 

  14. M. Ashfar, C. Kunal, J. Nelson, W. Thompson, Am. J. Med. Sci.310, 258 (1995).

    Google Scholar 

  15. B. W. Spurlock, N. A. Virani, C. A. Henry, West. J. Med.15, 208 (1991).

    Google Scholar 

  16. N. A. Watson, C. P. Fitzgerald, Med. J. Australia155, 124 (1991).

    CAS  Google Scholar 

  17. M. A. Leesar, R. Martyn, J. D. Talley, H. Frumin, Chest105, 606 (1994).

    CAS  Google Scholar 

  18. C. D. Buckley, J. K. Aronson, Br. J. Clin. Pharmacol.39, 680 (1995).

    CAS  Google Scholar 

  19. Y.-Q. Chu, I. W. Wainer, J. Chromatogr.497, 191 (1989).

    CAS  Google Scholar 

  20. H. Fieger, G. Blaschke, J. Chromatogr. B: Biomed. Appl.575, 255 (1992).

    Article  CAS  Google Scholar 

  21. C. Horne, H. Spahn, E. Mutschler, H. Knauf, Arzneim-Forsch./Drug Res.37, 956 (1987).

    CAS  Google Scholar 

  22. P. Hubert, P. Chiap, A. Ceccato, I. Bechet, R. Sibenaler-Dechamps, P. Maes, J. Crommen, J. Pharm. Biomed. Anal.10, 937 (1992).

    Article  CAS  Google Scholar 

  23. A. T. Kacprowicz, R. O. Fullinfaw, R. W. Bury, J. Chromatogr. B: Biomed. Appl.337, 412 (1985).

    Article  CAS  Google Scholar 

  24. R. Kern, E. Brode, D. Schoebel, Meth. Find. Exper. Clin. Pharmacol.14, 637 (1992).

    CAS  Google Scholar 

  25. C. Koeppel, A. Wagemann, J. Chromatogr. B: Biomed. Appl.570, 229 (1991).

    Article  CAS  Google Scholar 

  26. M. Kuwada, T. Tateyama, J. Tsutsumi, J. Chromatogr. B: Biomed. Appl.222, 507 (1981).

    Article  CAS  Google Scholar 

  27. P. M. Lacroix, S. J. Graham, E. G. Lovering, J. Pharmac. Biomed. Anal.9, 817 (1991).

    Article  CAS  Google Scholar 

  28. S. M. Lankford, S. A. Bai, J. Chromatogr. B: BIomed. Appl.663, 91 (1995).

    Article  CAS  Google Scholar 

  29. Y. Oda, N. Asakawa, T. Kajima, Y. Yoshida, T. Sato, Pharmac. Res.8, 997 (1991).

    Article  CAS  Google Scholar 

  30. J. A. Pieper, D. R. Rutledge, J. Chromatogr. Sci.26, 473, (1988).

    CAS  Google Scholar 

  31. J. Hasegawa, T. Fujita, Y. Hayashi, K. Iwamoto, J. Watanabe, J. Pharmac. Sci.73, 442 (1984).

    CAS  Google Scholar 

  32. R. L. Koch, P. Palicharla, J. Pharmacol. Exper. Ther.254, 612 (1990).

    CAS  Google Scholar 

  33. D. Romanova, E. Brandsteterova, D. Kralikova, L. Bozekova, M. Kriska, Pharmazie49, 779 (1994).

    CAS  Google Scholar 

  34. A. M. Rustum, J. Chromatogr.528, 480 (1990).

    CAS  Google Scholar 

  35. D. R. Rutledge, A. H. Abadi, L. M. Lopez, J. Chromatogr. Sci.32, 153 (1994).

    CAS  Google Scholar 

  36. J. M. Thomson, L. K. Pannel, J. Anal. Toxicol.5, 105 (1981).

    CAS  Google Scholar 

  37. D. J. Crouch, C. Crompton, D. E. Rollins, M. A. Peat, P. Francom, J. For. Sci.31, 1505 (1986).

    CAS  Google Scholar 

  38. J. F. Koepke, A. J. McBay, J. For. Sci.32, 1431 (1987).

    CAS  Google Scholar 

  39. A. E. Mutlib, W. E. Nelson, J. Pharmacol. Exper. Ther.252, 593 (1989).

    Google Scholar 

  40. J. M. Dethy, S. DeBroux, M. Lesne, J. Longstreth, P. Gilbert, J. Chromatogr. B: Biomed. Appl.654, 121 (1994).

    Article  CAS  Google Scholar 

  41. P. Manitpisitkul, W. L. Chiou, Biopharm. Drug Disp.14, 555 (1993).

    CAS  Google Scholar 

  42. V. K. Piotrovskii, D. O. Rumiantsev, V. I. Metelitsa, J. Chromatogr. B: Biomed. Appl. 275, 195 (1983).

    Article  CAS  Google Scholar 

  43. A. Shibukawa, I. W. Wainer, J. Chromatogr. B: Biomed. Appl. 574, 85 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negrusz, A., Wacek, B.C., Toerne, T. et al. Quantitation of verapamil and norverapamil in postmortem and clinical samples using liquid-liquid extraction, solid phase extraction, and HPLC. Chromatographia 46, 191–196 (1997). https://doi.org/10.1007/BF02495332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02495332

Key Words

Navigation