Advertisement

Russian Chemical Bulletin

, Volume 48, Issue 7, pp 1219–1224 | Cite as

A Langevin continuum model for electrostatic polarization of solvent: calculations of solvation energies of ions and molecules

  • V. B. Luzhkov
Physical Chemistry
  • 39 Downloads

Abstract

A Langevin continuum model is proposed for performing quantum-chemical calculations of the interaction energies of solute species with polar solvent. The electrostatic contribution is estimated in the framework of the dipole approximation using a Langevin-type function for description of solvent polarization. The parameters of the model for water are presented. Hydration enthalpies of organic ions and neutral polar and nonpolar molecules, whose wave functions were calculated in the 6–31 G* basis set, are well reproduced using the approach proposed.

Key words

solvation, solute-solvent interaction Langevin dipoles quantum-chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ya. Simkin and I. I. Sheikhet,Kvantovokhimicheskaya i statisticheskaya teoriya rastvorov. Vychislitel'nye metody i ikh primenenie [Quantum-Chemical and Statistical Theory of Solutions. Computational Methods and Their Application], Khimiya, Moscow, 1989, 256 pp. (in Russian).Google Scholar
  2. 2.
    A. Warshel,Computer Modeling of Chemical Reactions in Enzymes and Solutions, J. Wiley and Sons, New York, 1991.Google Scholar
  3. 3.
    C. J. Cramer and D. G. TruhlarStructure and Reactivity in Aqueous Solution, American Chemical Society, Washington, 1994, 568.Google Scholar
  4. 4.
    J. Tomasi and M. Perisco,Chem. Rev., 1994,94, 85.CrossRefGoogle Scholar
  5. 5.
    W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson,J. Am. Chem. Soc., 1990,112, 6127.CrossRefGoogle Scholar
  6. 6.
    C. J. Cramer and D. G. Truhlar,J. Am. Chem. Soc., 1991,113, 8305.CrossRefGoogle Scholar
  7. 7.
    C. J. Cramer and D. G. Truhlar,J. Comp.-Aided Mol. Des., 1992,6, 629.CrossRefGoogle Scholar
  8. 8.
    P. F. W. Stouten, C. Frommel, H. Nakamura, and C. Sander,Molecular Simulation, 1993,10, 97.Google Scholar
  9. 9.
    S. Miertus, E. Scrocco, and J. Tomasi,Chem. Phys., 1981,55, 117.CrossRefGoogle Scholar
  10. 10.
    G. P. Ford and B. Wang,J. Am. Chem. Soc. 1992,114, 10563.CrossRefGoogle Scholar
  11. 11.
    T. Fox, N. Rotch, and R. J. Zauhar,J. Comput. Chem., 1993,14, 253.CrossRefGoogle Scholar
  12. 12.
    C. Kolle and K. Jug,J. Comput. Chem., 1997,18, 1.CrossRefGoogle Scholar
  13. 13.
    V. Barone, M. Cossi, and J. Tomasi,J. Comput. Chem., 1998,19, 404.CrossRefGoogle Scholar
  14. 14.
    S. T. Russell and A. Warshel,Q. Rev. Biol., 1984,17, 283.Google Scholar
  15. 15.
    V. Luzhkov and A. Warshel,J. Comput. Chem. 1992,13, 199.CrossRefGoogle Scholar
  16. 16.
    J. Florian and A. Warshel,J. Phys. Chem., 1997,101, 5583.Google Scholar
  17. 17.
    G. Frelich,Teoriya dielektrikov, [Theory of Dielectrics], Izd. Inostr. Lit., Moscow, 1960, 252 pp. (in Russian).Google Scholar
  18. 18.
    C. J. F. Bottcher,Theory of Electric Polarization, Elsevier, Amsterdam, 1973, 1.Google Scholar
  19. 19.
    S. T. Russel and A. Warshel,J. Mol. Biol., 1985,185, 389.CrossRefGoogle Scholar
  20. 20.
    V. B. Luzhkov and A. Warshel,Dokl Akad. Nauk SSSR, 1991,321, 760 [Dokl. Phys. Chem., 1991 (Engl. Transl.)].Google Scholar
  21. 21.
    A. Rashin and B. Honig,J. Phys. Chem., 1985,89, 5588.CrossRefGoogle Scholar
  22. 22.
    R. A. Buono, T. J. Venanzi, R. J. Zauhar, V. B. Luzhkov, and C. A. Venanzi,J. Am. Chem. Soc., 1994,116, 1502.CrossRefGoogle Scholar
  23. 23.
    J. G. Kirkwood,J. Chem. Phys., 1934,2, 351.CrossRefGoogle Scholar
  24. 24.
    R. Noyes,J. Am. Chem. Soc., 1962,84, 513.CrossRefGoogle Scholar
  25. 25.
    J. Padova,J. Chem. Phys., 1963,39, 1552.CrossRefGoogle Scholar
  26. 26.
    W. A. Millen and D. W. Watts,J. Am. Chem. Soc., 1967,89, 6051.CrossRefGoogle Scholar
  27. 27.
    D. van Belle, M. Froeyen, G. Lippens, and S. Wodak.Mol. Phys., 1992,77, 239.CrossRefGoogle Scholar
  28. 28.
    E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev., 1977,77, 219.CrossRefGoogle Scholar
  29. 29.
    A. Ben-Naim and Y. Markus,J. Chem. Phys., 1984,81, 2016.CrossRefGoogle Scholar
  30. 30.
    A. Bondi,J. Phys. Chem. 1964,68, 441.Google Scholar
  31. 31.
    Spravochnik khimika [Handbook on Chemistry], Eds. S. A. Zonis and G. A. Simonov, Khimiya, Leningrad, 1971, 1 (in Russian).Google Scholar
  32. 32.
    B. H. Besler, K. M. Mertz, Jr., and P. A. Kollman,J. Comput. Chem., 1990,11, 431.CrossRefGoogle Scholar
  33. 33.
    A. Rashin and B. Honig,J. Phys. Chem., 1985,89, 5588.CrossRefGoogle Scholar
  34. 34.
    G. E. Klots,J. Phys. Chem., 1981,85, 3585.CrossRefGoogle Scholar
  35. 35.
    D. H. Aue, H. M. Webb, and M. T. Bowers,J. Am. Chem. Soc., 1976,98, 318.CrossRefGoogle Scholar
  36. 36.
    P. A. Kollman,Acc. Chem. Res., 1996,29, 461.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. B. Luzhkov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow RegionRussian Federation

Personalised recommendations