Russian Chemical Bulletin

, Volume 48, Issue 11, pp 2039–2045 | Cite as

Simulation of molecular and electronic structure of polyhydrogenated (n,0)-tubulenes and their analogs intercalated with lithium

  • E. G. Gal'pern
  • I. V. Stankevich
  • A. L. Chistyakov
  • L. A. Chernozatonskii
Physical Chemistry


Molecular and electronic structure of four polyhydrogenated (n,0)-tubulenes, namely, [−C24H4−] m (1), two isomers of composition [−C28H4−] m (2 and3), and [−C32H4−] m (4) withn benzene rings in the cross section (n=6, 7, 7, and 8, respectively), was simulated atm>1 (m is the number of repeating fragemnts). It was assumed that hydrogen atoms are attached to all carbon atoms lying on the two most distant elements of the cylinders of the corresponding tubulenes. The energy band structures of macromolecules1–4 and their Li-intercalated analogs [−C24H4Li−] m (5) [−C28H4Li−] m (two isomers,6 and7), and [−C32H4Li−] m (8), containing one Li atom per repeating unit at each center, were obtained in the EHT approximation by the crystal orbital method. Geometric parameters of repeating units of structures1–8 were found after MNDO/PM3 optimization of the energies of hydrocarbon molecules C72H24, C84H26 (two geometric isomers), and C96H28, containing three repeating units of corresponding tubulenes1–4 each. The conductivity types of polyhydrogenated tubulenes1–4 are the same as those of their precursors, (6,0)-, (7,0)-, and (8,0)-tubulenes. Dispersion curves of systems5–8 are much the same as those of macromolecules1–4; however, electron energy spectra of5–8 possess metallic conductivity type and the positions of Fermi levels for these systems are higher than for compounds1–4.

Key words

tubulenes (carbon nanotubes) polyhydrogenated tubulenes polyhydrogenated tubulenes intercalated with Li molecular mechanics method quantum-chemical calculations EHT approximation crystal orbital method MNDO/PM3 method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Iijima,Nature, 1991,354, 56.CrossRefGoogle Scholar
  2. 2.
    B. V. Deryagin and V. V. Fedoseev,Rost almaza and grafita iz gazovoi fazy [Growth of Diamond and Graphite from the Gas Phase], Nauka, Moscow, 1977 (in Russian).Google Scholar
  3. 3.
    R. Service,Science, 1998,281, 940.CrossRefGoogle Scholar
  4. 4.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund,Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1995.Google Scholar
  5. 5.
    S. Bandow,J. Appl. Phys., 1996,80, 1020.CrossRefGoogle Scholar
  6. 6.
    O. Voronov, J. Tompa, B. Kear, W. Mayo, S. Lia, and R. Loutfy,MRS Fall Meeting, Abstrs., Boston (USA), 1998, 394, s-3.19.Google Scholar
  7. 7.
    A. L. Ivanovskii,Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva [Quantum Chemistry in Materials Science. Nanotubular Forms of Matter], Izd. Institute of Solid State Chemistry, Ural Branch of the Russian, Academy of Sciences, Ekaterinburg, 1999 (in Russian).Google Scholar
  8. 8.
    F. V. Eletskii,Usp. Fiz. Nauk, 1997,167, 945 [Phys.-Usp., 1997,40, 899 (Engl. Transl.)].Google Scholar
  9. 9.
    Yu. E. Lozovik and A. M. Popov,Usp. Fiz. Nauk, 1997,167, 751 [Phys.-Usp., 1997,40, 899 (Engl. Transl.)].CrossRefGoogle Scholar
  10. 10.
    N. Takahashi, H. Dock, N. Matsuzawa, and M. Ata,Appl. Phys., A, 1993,74, 5790.Google Scholar
  11. 11.
    L. A. Chernozatonskii,Chem. Phys. Lett., 1998,297, 257.CrossRefGoogle Scholar
  12. 12.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley,Science, 1996,273, 483.Google Scholar
  13. 13.
    J. W. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker,Nature, 1998,391, 59.CrossRefGoogle Scholar
  14. 14.
    I. V. Zaporotskova, A. O Litinskii, and L. A. Chernozatonskii,Pis'ma Zh. Eksp. Teor. Fiz., 1997,66, 799 [JETP Lett., 1997,66, 841 (Engl. Transl.)].Google Scholar
  15. 15.
    E. G. Gal'pern, I. V. Stankevich, A. L. Chistyakov, and L. A. Chernozatonskii,Chem. Phys. Lett., 1993,214, 345.CrossRefGoogle Scholar
  16. 16.
    N. Hamada, S. Sawada, and A. Oshiyama,Phys. Rev. Lett.,68, 1992, 1579.CrossRefGoogle Scholar
  17. 17.
    J. W. Mintmire, B. I. Dunlap, and C. T. White,Phys. Rev. Lett.,68, 1992, 631.CrossRefGoogle Scholar
  18. 18.
    E. G. Gal'pern, V. V. Pinyaskin, I. V. Stankevich, and L. A. Chernozatonskii,J. Phys. Chem., B, 1997,101, 705.CrossRefGoogle Scholar
  19. 19.
    L. A. Chernozatonskii, E. G. Gal'pern, and I. V. Stankevich,Pis'ma Zh. Eksp. Teor. Fiz., 1998,67, 678 [JETP Lett., 1998,67, 712 (Engl Transl.)].Google Scholar
  20. 20.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery,J. Comp. Chem., 1993,14, 1347.CrossRefGoogle Scholar
  21. 21.
    R. Hoffmann,J. Chem. Phys., 1963,39, 1397.CrossRefGoogle Scholar
  22. 22.
    D. A. Bochvar, E. G. Gal'pern, and I. V. Stankevich,Zh. Strukt. Khim., 1988,29, 26 [J. Struct. Chem. USSR, 1988,29 (Engl. Transl.)].Google Scholar
  23. 23.
    P. N. Prasad, in:Organic Materials for Non-Linear Optics, Eds. A. Hann and D. Bloor, Roy. Soc. Chem., London, 1989, 264.Google Scholar
  24. 24.
    L. W. Shacklette, M. Maxfield, S. Gould, J. P. Wolf, P. P. Jow, and R. H. Baugham,Synth. Met., 1987,18, 611.CrossRefGoogle Scholar
  25. 25.
    N. Tyutyulkov, F. Dietz, K. Mullen, and M. Baumgarten,Chem. Phys., 1992,163, 55.CrossRefGoogle Scholar
  26. 26.
    D. J. Klein,Rep. Molec. Theory, 1990,1, 91.Google Scholar
  27. 27.
    N. Tyutyulkov, S. Karabunarliev, K. Mullen, and M. Baumgarten,Synth. Met., 1993,53, 205.CrossRefGoogle Scholar
  28. 28.
    O. M. Kepp and P. N. D'yachkov,Khim. Fiz., 1998,17, 118 [Chem. Phys. Repts., 1998,17 (Engl. Transl.)].Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. G. Gal'pern
    • 1
  • I. V. Stankevich
    • 1
  • A. L. Chistyakov
    • 1
  • L. A. Chernozatonskii
    • 2
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.N. M. Emanuel' Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations