Skip to main content
Log in

Mechanisms of inversion of bond configuration at the tetrahedral boron atom in five-membered chelate cycles

  • Physical Chemistry
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Mechanisms of inversion of the bond configuration at the tetrahedral boron center in five-membered chelate cycles of the 1,3,2-oxazaborolidine and 1,3,2-oxazaborolidene molecules were studied by theab initio MP2(full)/6-31G** method. It was shown that enantiotopomerization occurs by a dissociative mechanism with the cleavage of the B←N bond and the formation of acyclic intermediates with tricoordinate planar boron atom. The calculated energy barriers to inversion of tetrahedral bond configurations at boron centers in the two chelate complexes are equal to 13.1 and 15.4 kcal mol−1, respectively. In contrast to 1,3,2-oxazaborolidine, internal rotation about the B−O bond in its unsaturated analog makes an appreciable contribution to the reaction coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Stryer,Biochemistry, W. H. Freeman and Co., San Francisco, 1981.

    Google Scholar 

  2. V. I. Minkin, L. E. Nivorozhkin, and M. S. Korobov,Usp. Khim., 1994,63, 303 [Russ. Chem. Rev., 1994,63, (Engl. Transl.)].

    CAS  Google Scholar 

  3. P. v. R. Schleyer and E.-U. Wurthwein,Chem. Commun., 1982, 542.

  4. R. M. Minyaev, G. V. Orlova, and V. I. Minkin, inIII Vsesoyuznaya konferentsiya “Uspekhi khimii azotistykh geterotsiklov” [III All-Union Conf. “Adv. in Chemistry of Nitrous Heterocycles”], Rostov State Univ., Rostov-on-Don, 1983, 192 (in Russian).

    Google Scholar 

  5. M.-b. Krogh-Jespersen, J. Chandrasekhar, E. U. Wurthwein, J. B. Kollins, and P. v. R. Schleyer,J. Am. Chem. Soc., 1980,102, 2263.

    Article  CAS  Google Scholar 

  6. R. Hoffmann, V. I. Minkin, and B. K. Carpenter,Bull. Soc. Chim. France, 1996,133, 117.

    CAS  Google Scholar 

  7. J. D. Cox and D. Pilcher,Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.

    Google Scholar 

  8. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud,JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data., Suppl., 1995, 14.

  9. H. Kessler, G. Zimmermann, H. Fietze and H. Mohrle,Chem. Ber., 1978,111, 2406.

    Google Scholar 

  10. T. Burgemeister, R. Grobe-Einster, R. Grotstollen, and A. Mannschreck,Chem. Ber., 1981,114, 3403.

    CAS  Google Scholar 

  11. S. Toyota and M. Oki,Bull. Chem. Soc. Jpn., 1991,64, 1554.

    Article  CAS  Google Scholar 

  12. A. H. Cowley and J. L. Mils,J. Am. Chem. Soc., 1969,91, 2911.

    Article  CAS  Google Scholar 

  13. M. S. Korobov, G. S. Borodkin, N. I. Borisenko, T. A. Ryskina, L. E. Nivorozhkin, and V. I. Minkin,J. Mol. Struct (Theochem.), 1989,200, 61.

    Article  Google Scholar 

  14. J. B. Foresman and A. Frisch,Exploring Chemistry with Electronic Structure Methods, Pittsburg, Gaussian, Inc., PA, 1996.

    Google Scholar 

  15. R. M. Minyaev,Usp. Khim., 1994,63, 939 [Russ. Chem. Rev., 994,63 (Engl. Transl.)].

    CAS  Google Scholar 

  16. S. J. Retigg and J. Trotter,Can. J. Chem., 1973,51, 1288.

    Article  Google Scholar 

  17. A. F. Wells,Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1986.

    Google Scholar 

  18. N. Farfan, D. Castello, P. Joseph-Nathan, and R. Contreras,J. Chem. Soc. Perkin, 2, 1992, 527.

    Google Scholar 

  19. A. Haaland,Angew. Chem. Intern. Ed. Engl., 1990,28, 992.

    Article  Google Scholar 

  20. L. R. Thorne, R. D. Suenram, and F. J. Lovas,J. Chem. Phys., 1983,78, 167.

    Article  CAS  Google Scholar 

  21. P. M. Kuznesof and R. L. Kuczkowski,Inorg. Chem., 1978,17, 2308.

    Article  CAS  Google Scholar 

  22. J. M. Schulman and R. L. Disch,J. Mol. Struct. (Theochem.), 1995,238, 109.

    Article  Google Scholar 

  23. R. H. Crabtree, P. E. M. Siegbahn, O. Eisenstein, A. L. Rheingold, and T. F. Koetzle,Acc. Chem. Res., 1996,29, 348.

    Article  CAS  Google Scholar 

  24. M. J. Frish, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople,GAUSSIAN-94, Revision B. 3, Gaussian, Inc., Pittsburgh (PA), USA, 1995.

    Google Scholar 

  25. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery,J. Comput. Chem., 1993,14, 1347. (GAMESS, Version 1996).

    Article  CAS  Google Scholar 

  26. G. Schafternaar,MOLDEN, CAOS/CAMM Center Nijmegen Toernooiveld, Nijmegen, The Netherlands.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 250–255 February, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starikov, A.G., Minyaev, R.M. & Minkin, V.I. Mechanisms of inversion of bond configuration at the tetrahedral boron atom in five-membered chelate cycles. Russ Chem Bull 48, 250–255 (1999). https://doi.org/10.1007/BF02494541

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02494541

Key words

Navigation