Advertisement

Chromatographia

, Volume 56, Issue 1, pp S31–S39 | Cite as

Phenomenological approach to the mechanism of retention in RP HPLC

  • L. Szepesy
Originals Column Liquid Chromatography

Summary

The retention process in reversed-phase liquid chromatography (RPLC) and the mechanism behind it can best be followed by a phenomenological description of molecular interactions. This can be accomplished by using the linear solvation-energy relationship (LSER). The retention factor (logk) can be expressed as the difference between the sum of the positive, retention-increasing, terms and the sum of the negative, retention-reducing, terms of the LSER equation. Calculated and measured logk values were compared for five columns with widely different characteristics. From among the 32 test solutes used ten with significantly different solvation properties were selected to demonstrate the effect of the molecular properties of the solutes on the mechanism of retention. The effect of mobile-phase composition on the retention process was also demonstrated. The relative contributions of the different molecular interactions to the mechanism of retention was illustrated by comparing the percentage contributions of the individual terms of the LSER equation.

Key Words

Column liquid chromatography Molecular interactions Linear solvation-energy relationships Effect of molecular properties of the solutes 

References

  1. [1]
    Horváth, Cs.; Melander, W.; Molnár, I.J. Chromatogr. 1976,203, 129–156.CrossRefGoogle Scholar
  2. [2]
    Horváth, Cs.; Melander, W.J. Chromatogr. Sci. 1977,15, 393–409.Google Scholar
  3. [3]
    Sinanoglu, O. InAdvances in Chemical Physics: Hirschfelder, J.O., Ed., Wiley, New York,1967, p. 283.Google Scholar
  4. [4]
    Martire, D.E.; Boehm, R.E.J. Phys. Chem. 1983,87, 1045–1062.CrossRefGoogle Scholar
  5. [5]
    Dill, K.A.J. Phys. Chem. 1987,91, 1980–1988.CrossRefGoogle Scholar
  6. [6]
    Dill, K.A.; Naghizadeh, J.; Marqusee, J.A.Ann. Rev. Phys. Chem. 1988,39, 425–461.CrossRefGoogle Scholar
  7. [7]
    Ying, P.T.; Dorsey, J.G.; Dill, K.A.Anal. Chem. 1989,61, 2540–2546.CrossRefGoogle Scholar
  8. [8]
    Dorsey, J.G.; Dill, K.A.Chem. Rev. 1989,61, 331–346.CrossRefGoogle Scholar
  9. [9]
    Sander, L.C.; Callis, J.B.; Field, L.R.Anal. Chem. 1983,55, 1068–1075.Google Scholar
  10. [10]
    Tchapla, A.; Heron, S.; Lesellier, E.; Colin, H.J. Chromatogr. A 1993,656, 81–112.CrossRefGoogle Scholar
  11. [11]
    Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L.Regular and Related Solutions, Van Nostrand Reinhold, New York,1970.Google Scholar
  12. [12]
    Tijssen, R.; Billiet, H.A.; Schoenmakers, P.J.J. Chromatogr. 1976,122, 185–193.CrossRefGoogle Scholar
  13. [13]
    Schoenmakers, P.J.A Systematic Approach to Mobile Phase Effects in Reversed Phase Liquid Chromatography, Ph.D. Thesis, Technical University of Delft,1981.Google Scholar
  14. [14]
    Schoenmakers, P.J.; Billiet, H.A.; de Galan, L.J. Chromatogr. 1981,218, 261–271.CrossRefGoogle Scholar
  15. [15]
    Schoenmakers, P.J.; Billiet, H.A.; de Galan, L.Chromatographia 1982,15, 205.CrossRefGoogle Scholar
  16. [16]
    Kaliszan, R.Quantitative Structure-Chromatographic Retention Relationships, Wiley, New York,1987.Google Scholar
  17. [17]
    Kaliszan, R.Anal. Chem. 1992,64, 619A-631A.Google Scholar
  18. [18]
    Kaliszan, R.J. Chromatogr. A 1993,656, 417–435.CrossRefGoogle Scholar
  19. [19]
    Kaliszan, R.Structure and Retention in Chromatography, A Chemometric Approach, Harwood Academic Publisher, Amsterdam,1997.Google Scholar
  20. [20]
    Kaliszan, R.CRC Crit. Rev. Anal. Chem. 1986,16, 323.Google Scholar
  21. [21]
    Valkó, K.; Slégel, P.J. Chromatogr. 1992,592, 49–61.CrossRefGoogle Scholar
  22. [22]
    Lu, P.; Zon, H.; Zhang, Y.J. Chromatogr. 1990,509, 171.CrossRefGoogle Scholar
  23. [23]
    Forgács, E.; Cserháti, T.Chromatographia 1992,33, 356.CrossRefGoogle Scholar
  24. [24]
    Barman, B.N.; Martire, D.E.Chromatographia 1992,34, 347–356.CrossRefGoogle Scholar
  25. [25]
    Kamlet, M.J.; Taft, R.W.J. Am. Chem. Soc. 1976,98, 377–383.CrossRefGoogle Scholar
  26. [26]
    Kamlet, M.J.; Taft, R.W.J. Am. Chem. Soc. 1976,98 2886–2894.CrossRefGoogle Scholar
  27. [27]
    Kamlet, M.J.; Taft, R.W.,J. Chem. Soc. Perkin Trans II.1979, 349–356.Google Scholar
  28. [28]
    Kamlet, M.J.; Abboud, J.L.M.; Taft, R.W.J. Am. Chem. Soc. 1981,103, 1080–1086.CrossRefGoogle Scholar
  29. [29]
    Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W.J. Org. Chem. 1983,48, 2877–2887.CrossRefGoogle Scholar
  30. [30]
    Sadek, P.C.; Carr, P.W.; Doherty, R.M.; Kamlet, M.J.; Taft, R.W.; Abraham, M.H.Anal. Chem. 1985,57, 2971–2978.CrossRefGoogle Scholar
  31. [31]
    Kamlet, M.J.; Doherty, R.M.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W.Chemtech 1986,16, 566–576.Google Scholar
  32. [32]
    Abraham, M.H.; Whiting, G.S.; Doherty, R.M.; Shuely, W.J.J. Chromatogr. 1990,518, 329–348.CrossRefGoogle Scholar
  33. [33]
    Abraham, M.H.; Whiting, G.S.; Doherty, R.M.; Shuely, W.J.J. Chromatogr. 1991,587, 229–236.CrossRefGoogle Scholar
  34. [34]
    Kollie, T.O.; Poole, C.F.Chromatographia 1992,33, 551–559.CrossRefGoogle Scholar
  35. [35]
    Poole, C.F.; Kollie, T.O.; Poole, S.K.Chromatographia 1992,34, 281–302.CrossRefGoogle Scholar
  36. [36]
    Poole, C.F.; Kollie, T.O.Anal. Chim. Acta 1993,282, 1–17.CrossRefGoogle Scholar
  37. [37]
    Carr, P.W.; Doherty, R.M.; Kamlet, M.J.; Taft, R.W.; Melander, W.; Horváth, Cs.Anal. Chem. 1986,58, 2674–2680.CrossRefGoogle Scholar
  38. [38]
    Kamlet, M.J.; Doherty, R.M.; Abraham, M.H.; Marcus, T.; Taft, R.W.J. Phys. Chem. 1988,92, 5244–5255.CrossRefGoogle Scholar
  39. [39]
    Park, J.H.; Carr, P.W.J. Chromatogr. 1989,465, 123–136.CrossRefGoogle Scholar
  40. [40]
    Cheong, W.J.; Carr, P.W.Anal. Chem. 1989,61, 1524–1529.CrossRefGoogle Scholar
  41. [41]
    Li, J.; Zhang, Y.; Dallas, A.J.; Carr, P.W.J. Chromatogr. 1991,550, 101–134.CrossRefGoogle Scholar
  42. [42]
    Roses, M.; Bosch, E.Anal. Chim. Acta 1993,274, 147–162.CrossRefGoogle Scholar
  43. [43]
    Abraham, M.H.Chem. Soc. Rev. 1993,22, 73–88.CrossRefGoogle Scholar
  44. [44]
    Abraham, M.H.Pure Appl. Chem. 1993,65, 2503–2512.Google Scholar
  45. [45]
    Abraham, M.H.J. Phys. Org. Chem. 1993,6, 660–669.CrossRefGoogle Scholar
  46. [46]
    Abraham, M.H.; Andonian-Haftvan, J.; Whiting, G.S.; Leo, A.J. Chem. Soc. Perkin Trans. II 1994, 1177–1791.Google Scholar
  47. [47]
    Sándi, Á.; Szepesy, L.J. Chromatogr. A 1998,818, 19–30.CrossRefGoogle Scholar
  48. [48]
    Szepesy, L.Chromatographia Suppl. 2000,51, S98-S107.CrossRefGoogle Scholar
  49. [49]
    Abraham, M.H.; Roses, M.J. Phys. Org. Chem. 1994,7, 672–684.CrossRefGoogle Scholar
  50. [50]
    Park, J.H.; Chae, J.J.; Nah, T.H.; Jang, M.D.J. Chromatogr. A 1994,664, 149–158.CrossRefGoogle Scholar
  51. [51]
    Tan, L.C.; Carr, P.W.; Abraham, M.H.J. Chromatogr. A 1996,752, 1–18.CrossRefGoogle Scholar
  52. [52]
    Jackson, P.T.; Schure, M.R.; Weber, T.W.; Carr, P.W.Anal. Chem. 1997,69, 416–425.CrossRefGoogle Scholar
  53. [53]
    Abraham, M.H.; Roses, M.; Poole, C.F.; Poole, S.K.J. Phys. Org. Chem. 1997,10, 358–368.CrossRefGoogle Scholar
  54. [54]
    Jackson, P.T.; Schure, M.R.; Weber, T.W.; Carr, P.W.Anal. Chem. 1997,69, 358–369.Google Scholar
  55. [55]
    Sándi, Á.; Szepesy, L.J. Chromatogr. A 1998,818, 1–17.CrossRefGoogle Scholar
  56. [56]
    Tan, L.C.; Carr, P.W.J. Chromatogr. A 1998,799, 1–19.CrossRefGoogle Scholar
  57. [57]
    Wang, A.; Tan, L.C.; Carr, P.W.J. Chromatogr. A 1999,848, 21–37.CrossRefGoogle Scholar
  58. [58]
    Zhao, J.; Carr, P.W.Anal. Chem. 1999,71, 2623–2632.CrossRefGoogle Scholar
  59. [59]
    Reta, M.; Carr, P.W.; Sadek, P.C.; Rutan, S.C.Anal. Chem. 1999,71, 3484–3496.CrossRefGoogle Scholar
  60. [60]
    Sándi, Á.; Szepesy, L.J. Chromatogr. A 1999,845, 113–131.CrossRefGoogle Scholar
  61. [61]
    Szepesy, L.; Háda, V.Chromatographia 2001,54, 99–108.CrossRefGoogle Scholar
  62. [62]
    O'Gara, J.E.; Alden, B.A.; Watter, T.H.; Peterson, J.S.; Niederländer, C.I.; Neue, U.D.Anal. Chem. 1995,67, 3809–3813.CrossRefGoogle Scholar
  63. [63]
    Sándi, Á.; Nagy, M.; Szepesy, L.J. Chromatogr. A 2000,893, 215–234.CrossRefGoogle Scholar
  64. [64]
    Rohrschneider, L.J. Sep. Sci. 2001,24, 3–9.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2002

Authors and Affiliations

  • L. Szepesy
    • 1
  1. 1.Department of Chemical TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations