, Volume 50, Issue 1–2, pp 45–51 | Cite as

Rapid detection of compositional drift of polydisperse copolymers using thermal field-flow fractionation and multi-angle light scattering

  • E. P. C. Mes
  • R. Tijssen
  • W. Th. Kok


The use of thermal field-flow fractionation (ThFFF) with multi-angle light scattering (MALS) for the rapid detection of compositional heterogeneity in random copolymers is demonstrated. Soret coefficients were directly calculated from the ThFFF retention times while the MALS detector provided the polymer's radius of gyration (R g) distribution. FromR g, the diffusion coefficient (D) could be calculated and this allowed, in combination with the Soret coefficient, the calculation of the thermal diffusion coefficient (D T). It was shown that theD T distribution can serve as a measure for the chemical composition distribution of random styrene acrylonitrile copolymers. Comparison of ThFFF-MALS results with literature data from ThFFF-hydrodynamic chromatography (HDC) cross-fractionation experiments showed a fair agreement.

Key Words

Thermal field-flow fractionation Multi-angle light scattering Polydisperse copolymers Styrene acrylonitrile Compositional heterogeneity 



concentration kg m−3


sample concentration kg m−3


diffusion coefficient m2 s−1


thermal diffusion coefficient m2 s−1 K−1


optical constant


molecular mass kg mol−1


weight-average molecular mass kg mol−1


refractive index


retention ratio

R (Φ)

excess Rayleight ratio m−1


radius of gyration m


hydrodynamic radius m


retention time s


void time s


cold wall temperature K


temperature drop K


scattering angle rad


dimensionless retention parameter


wavelength m




conversion factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. H. Mourey, T. C. Schunk, in E. Heftman, Ed., Chromatography: Fundamentals and Applications of Chromatography and Related Differential Migration Methods, J. Chromatogr. Library, vol. 51B, 5th ed., Elsevier, Amsterdam, 1992, chapter 22Google Scholar
  2. [2]
    S. Teramachi, A. Hasegawa, S. Yoshida, Macromolecules16, 542 (1983).CrossRefGoogle Scholar
  3. [3]
    G. Glöckner, J. H. M. van den Berg, J. Chromatogr.384, 135 (1987).CrossRefGoogle Scholar
  4. [4]
    A. C. van Asten, R. J. van Dam, W. Th. Kok, R. Tijssen, H. Poppe, J. Chromatogr.703, 245 (1995).CrossRefGoogle Scholar
  5. [5]
    J. N. Willis, L. M. Wheeler, in T. Provder, M. W. Urban, H. G. Barth, Eds., Chromatographic Characterization of Polymers, Hyphenated and Multidimensional Techniques, Adv. Chem. Ser., vol. 247, ACS, Washington DC, 1995, chapter 19.Google Scholar
  6. [6]
    G. W. Somsen, E. J. E. Rozendom, C. Gooijer, N. H. Velthorst, U. A. Th. Brinkman, Analyst121, 1069 (1996).CrossRefGoogle Scholar
  7. [7]
    D. J. Harrison, W. R. Yates, J. F. Johnson, J. Appl. Polym. Sci.31, 1393 (1986).CrossRefGoogle Scholar
  8. [8]
    R. Takiguchi andT. Uryu, J. Appl. Polym. Sci.30, 3961 (1985).CrossRefGoogle Scholar
  9. [9]
    T. J. Dumelow, Makromol. Sci.-Chem. A26, 125 (1989).Google Scholar
  10. [10]
    D. Roessner, W. M. Kulicke, J. Chromatogr. A687, 249 (1994).CrossRefGoogle Scholar
  11. [11]
    S. Lee, O. Kwon, in T. Provder, M. W. Urban, H. G. Barth, Eds., Chromatographic Characterization of Polymers, Hyphenated and Multidimensional Techniques, Adv. Chem. Ser., vol. 247, ACS, Washington DC, 1995, chapter 8.Google Scholar
  12. [12]
    H. Thielking, D. Roessner, W. M. Kulicke, Anal. Chem.67, 3229 (1995).CrossRefGoogle Scholar
  13. [13]
    J. Jança, Field-Flow Fractionation. Chrom. Sci. Ser., vol. 39, Marcel Dekker, New York, 1988.Google Scholar
  14. [14]
    M. E. Hovingh, G. H. Thompson, J. C. Giddings Anal. Chem.42, 195 (1970).CrossRefGoogle Scholar
  15. [15]
    M. E. Schimpf, J. C. Giddings, J. Polym. Sci., Part B: Polym. Phys.27, 1317 (1989).CrossRefGoogle Scholar
  16. [16]
    M. E. Schimpf, J. C. Giddings, J. Polym. Sci., Part B: Polym. Phys.28, 2673 (1990).CrossRefGoogle Scholar
  17. [17]
    M. E. Schimpf, L. M. Wheeler, P. F. Romeo, in T. Provder, Ed., Chromatography of Polymers, ACS Symp. Ser., vol. 521, ACS, Washington DC, 1993, chapter 5.Google Scholar
  18. [18]
    S. J. Jeon, D. W. Lee, J. Polym. Sci., Part B: Polym. Phys.33, 411 (1995).CrossRefGoogle Scholar
  19. [19]
    P. Kratochvil, Classical Light Scattering from Polymer Solutions, Elsevier, Amsterdam, 1987.Google Scholar
  20. [20]
    D. W. Shortt J. Chromatogr. A686, 11 (1994).CrossRefGoogle Scholar
  21. [21]
    P. J. Wyatt, L. Papazian, LC-GC11, 862 (1993).Google Scholar
  22. [22]
    P. J. Wyatt, J. Chromatogr.648, 27 (1993).CrossRefGoogle Scholar
  23. [23]
    P. J. Wyatt, Anal. Chim. Acta272, 1 (1993).CrossRefGoogle Scholar
  24. [24]
    M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1987.Google Scholar
  25. [25]
    S. Park, T. Chang, I. H. Park. Macromolecules24, 5729 (1991).CrossRefGoogle Scholar
  26. [26]
    Y. Oono, M. Kohmoto, J. Chem. Phys.78, 520 (1983).CrossRefGoogle Scholar
  27. [27]
    Y. Tsunashima, M. Hirata, N. Nemoto, M. Kurata, Macromolecules21, 1107 (1988).CrossRefGoogle Scholar
  28. [28]
    H. G. Elias, An Introduction to Polymer Science, CH, Weinheim, 1997, chapter 5.Google Scholar
  29. [29]
    M. Bhatt, A. M. Jamieson, Macromolecules21, 3015 (1988).CrossRefGoogle Scholar
  30. [30]
    L. J. Fetters, N. Hadjichristidis, J. S. Lindner, J. W. Mays, J. Phys. Chem. Ref. Data23, 619 (1994).CrossRefGoogle Scholar
  31. [31]
    M. Bhatt, A. M. Jamieson, R. G. Petschek, Macromolecules22, 1374 (1989).CrossRefGoogle Scholar
  32. [32]
    A. Rudin, H. K. Johnston, J. Polym. Sci., Part B: Polym. Phys.9, 55 (1971).Google Scholar
  33. [33]
    R. Tijssen, J. Bos, in F. Dondi, G. Guiochon, Eds., Theoretical Advancement in Chromatography and Related Separation Techniques, NATO ASI Ser. C., vol. 383, Ferrara, 1992, p. 397–441.Google Scholar
  34. [34]
    W. W. Yau, S. W. Rementer, J. Liq. Chromatogr.13, 627 (1990).Google Scholar
  35. [35]
    J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed., John Wiley & Sons, New York, 1989.Google Scholar
  36. [36]
    A. C. van Asten, H. F. M. Boelens, W. Th. Kok, H. Poppe, P. S. Williams, J. C. Giddings, Sep. Sci. Technol.29, 513 (1994).Google Scholar
  37. [37]
    J. C. Giddings, Y. H. Yoon, K. D. Caldwell, M. N. Myers, M. E. Hovingh, Sep. Sci.10, 447 (1975).Google Scholar
  38. [38]
    M. E. Schimpf, M. N. Myers, J. C. Giddings, J. Appl. Pol. Sci.33, 117 (1987).CrossRefGoogle Scholar
  39. [39]
    A. C. van Asten, W. Th. Kok, R. Tijssen, H. Poppe, J. Polym. Sci., Part B: Polym. Phys.34, 297 (1996).CrossRefGoogle Scholar
  40. [40]
    L. Jeng, S. T. Balke, T. H. Mourey, L. Wheeler, P. Romeo, J. Appl. Pol. Sci.49, 1359 (1993).CrossRefGoogle Scholar
  41. [41]
    U. Dayal, S. K. Mehta, J. Liq. Chromatogr.17, 303 (1994).Google Scholar
  42. [42]
    E. Venema, P. de Leeuw, J. C. Kraak, H. Poppe, R. Tijssen, J. Chromatogr. A765, 135 (1997).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • E. P. C. Mes
    • 1
  • R. Tijssen
    • 1
  • W. Th. Kok
    • 1
  1. 1.Laboratory for Analytical ChemistryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations