Oral Radiology

, Volume 14, Issue 1, pp 11–22 | Cite as

Skeletal image for index of bone strength in the radiographic trabecular pattern

  • Tsutomu Iizuka
  • Takashi Sakurai
  • Isamu Kashima
Original Article


The purpose of this study is to investigate the relationship between the geometric structure of bone trabeculae and internal stress distributions and to demonstrate the ability of mathematical morphology to produce a representative two-dimensional structural image of a calcaneus. A finite element analysis was conducted to examine the relationship between the structure of bone trabeculae and the internal stress distributions using a dried cadaver calcaneus of a 60 year old male. Furthermore, morphological processing was carried out on the clinical images of a normal and an abnormal calcaneus using digital computed radiographic information to analyze the relationship between the geometric and the skeletal structures of bone trabeculae using both an osteoporotic and a normal patient. The skeletal structure of normal calcaneal trabeculae, obtained by mathematical morphologic processing, approximated the macroscopic pattern on the sagittal section and the principal stress distribution. The differences in the derived skeletal structure between normal and abnormal calcanei were visualized on binary images obtained by morphological processing. The skeletal pattern of bone is related to the strength of bone, and furthermore, as the skeletal pattern obtained by the mathematical morphology process was comparable to the actual trabecular structure present, mathematical morphologic skeletal patterns may be useful indicators of bone strength.

Key Words

Image processing Computed radiography Digital image Mathematical morphology Finite element analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleerekoper, M., Frame, B., Rao, D.S.: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis: Implications for the microanatomic and cellular mechanism of bone loss.J. Clin. Invest. 72: 1396–1409, 1983PubMedGoogle Scholar
  2. 2).
    Motoie, H., Nakamura, T., O'uchi, N., Nishikawa, H., Kanoh, H., Abe, T., Kawashima, H.: Effects of the biophosphonate YM175 on bone mineral density, strength structure, and turnover in ovariectomized beagles on concomitant dietary calcium restriction.J. Bone Miner. Res. 10: 910–920, 1995PubMedGoogle Scholar
  3. 3).
    Kleerekoper, M., Villanueva, A.R., Stanciu, J., Rao, D.S., Parfitt, A.M.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures.Calcif. Tissue Int. 37: 594–597, 1985PubMedGoogle Scholar
  4. 4).
    Recker, R.R.: Architecture and vertebral fracture.Calcif. Tissue Int. 53: 139–142, 1993CrossRefGoogle Scholar
  5. 5).
    Caldwell, C.B., Willet, K., Cuncins, A.V., Hearn, T.C.: Characterization of vertebral strength using digital radiographic analysis of bone structure.Med. Phys. 22: 611–615, 1995PubMedCrossRefGoogle Scholar
  6. 6).
    Caligiuri, P., Giger M.L., Favus, M.J., Jia, H., Doi, K., Dixon, L.B.: Computerized radiographic analysis of osteoporosis: preliminary evaluation.Radiology 186: 471–474, 1993PubMedGoogle Scholar
  7. 7).
    Funke, M., Kopka, L., Vosshenrich, R., Fischer, U., Ueberschaer, A., Oestmann, J.W., Grabbe, E.: Broadband ultrasound attenuation in the diagnosis of osteoporosis correlation with osteodensitometry and fracture.Radiology 194: 77–81, 1995PubMedGoogle Scholar
  8. 8).
    Wehrli, F.W., Ford, J.C., Haddad, J.G.: Osteoporosis: Clinical assessment with quantitative MR imaging in diagnosis.Radiology 196: 631–641, 1995.PubMedGoogle Scholar
  9. 9).
    Umeki, Y.: Static results of medial foot arch.J. Jpn. Orthop. Assoc. 65: 891–901, 1991Google Scholar
  10. 10).
    Kashima, I.: Computed radiology with photostimulable p phosphor in oral and maxillofacial radiology.Oral Surg. Oral Med. Oral Pathol. 80: 577–598, 1995Google Scholar
  11. 11).
    Kumasaka, S., Kashima, I.: Initial investigation of mathematical morphology for digital extraction of trabecular bone patterns.Dentomaxillofac. Radiol. 26: 35–42, 1997CrossRefGoogle Scholar
  12. 12).
    Kumasaka, S., Kashima, I.: Mathematical morphology for bone trabecular pattern analysis.Computer Assisted Radiology, Springer, Paris: 13–19, 1996Google Scholar
  13. 13).
    1993 consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis.Am. J. Med. 94: 646–650, 1993Google Scholar
  14. 14).
    Mosekilde, Li., Mosekilde, Le., Danielsen, C.C.: Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individualsBone 8: 79–85, 1987PubMedCrossRefGoogle Scholar
  15. 15).
    Tanaka, Y., Nakamura, T., Nishida, S., Suzuki, K., Takeda S., Sato, K., Nishii, T.: Effects of a synthetic vitamin D analog, ED-71, on bone dynamics and strength in cancellous and cortical bone in prednisolone-treated rats.J. Bone Miner. Res. 11: 325–336, 1996PubMedGoogle Scholar
  16. 16).
    Shen, V., Birchman, R., Xu, R., Otter, M., Wu, D., Lindsay, R., Dempster, D.W.: Effects of reciprocal treatment with estrogen and estrogen plus parathyoid hormone on bone structure and strength in ovariectomized rats.J. Clin. Invest. 96: 2331–2338, 1995PubMedCrossRefGoogle Scholar
  17. 17).
    Yettram, A.L., Camilleri, N.N.: The forces acting on the human calcaneus.J. Biomed. Eng. 15: 46–50, 1993PubMedGoogle Scholar
  18. 18).
    Singh, M., Nagrath, A.R., Maini, P.S.: Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis.J. Bone Joint Surg. Am. 52A: 457–467, 1971Google Scholar
  19. 19).
    Oxnard, C.E.: Bone and bone, architecture and stress, fossils and osteoporosis.J. Biomech. 26: 63–79, 1993PubMedCrossRefGoogle Scholar
  20. 20).
    Weinstein, R.S., Majumdar, S.: Fractal geometry and vertebral compression fractures.J. Bone Miner. Res. 11: 1797–1802, 1994CrossRefGoogle Scholar
  21. 21).
    Inoue, E., Ogawa, K.: Analysis of trabecular patterns using Fractal dimensions.Record of Nuclear Science Symposium and Medical Imaging Conference 3: 1493–1496, 1996Google Scholar
  22. 22).
    Ito, M., Ohki, M., Hayashi, K., Yamada, M., Uetani, M., Nakamura, T.: Trabecular texture analysis of CT images in the relationship with spinal fracture.Radiology 194: 55–59, 1995PubMedGoogle Scholar
  23. 23).
    Rockoff, S.D., Scandrett, J., Zacher, R.: Quantitation of relevant image information: automated radiographic bone trabecular characterization.Radiology 101: 435–439, 1971PubMedGoogle Scholar
  24. 24).
    Dehoff, R.T., Aigeltinger, E.H., Craig, K.R.: Experimental determination of the topological properties of three-dimensional microstructures.J. Microsc. 95: 69, 1972Google Scholar
  25. 25).
    Vesterby, A., Gundersen, H.J.G., Melsen, F.: Star Volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation.Bone 10: 7–13, 1989PubMedCrossRefGoogle Scholar
  26. 26).
    Vesterby, A.: Star, volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of first lumbar vertebra.Bone 11: 149–155, 1990PubMedCrossRefGoogle Scholar
  27. 27).
    Hahn, M., Vogel, M., Pompesius-Kempa, M., Delling, G.: Trabecular bone pattern factor: a new parameter for simple quantification of bone microarchitecture.Bone 13: 327–330, 1992PubMedCrossRefGoogle Scholar
  28. 28).
    Garrahan, N.J., Mellish R.W.E., Compston, J.E.: A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies.J. Microsc. 142: 341–349, 1986PubMedGoogle Scholar
  29. 29).
    Geraets, W.G.M., Van der stelt, P.F.: Analysis of the radiographic trabecular pattern.Pattern Recognition Letter 12: 575–581, 1991CrossRefGoogle Scholar
  30. 30).
    Geraets, W.G.M., Van der stelt, P.F.: The radiographic trabecular bone pattern during menopause.Bone 14: 859–864, 1993PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology 1998

Authors and Affiliations

  • Tsutomu Iizuka
    • 1
  • Takashi Sakurai
    • 1
  • Isamu Kashima
    • 1
  1. 1.Oral and Maxillofacial RadiologyKanagawa Dental CollegeYokosuka, KanagawaJapan

Personalised recommendations