Skip to main content
Log in

Ultrasound-assisted derivatization of phenolic compounds in spiked water samples before pervaporation, gas chromatographic separation, and flame lonization detection

  • Originals
  • Gas Chromatography
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A fully automated method, based on continuous ultrasound-assisted derivatization coupled with pervaporation before gas chromatographic separation and flame ionization detection, has been developed for the determination of phenol and cresols in water. Spiked water samples were doped with acetic anhydride and dipotassium hydrogen phosphate, before introduction into the flow system, to achieve catalytic acetylation of the target compounds. A multivariate study was performed to optimize the main factors affecting the derivatization process. The correlation coefficients, r, of the calibration plots obtained were better than 0.999 for cresols and better than 0.99 for phenol. Detection limits were 0.02 μg mL1 for phenol, o-cresol, andp-cresol, and 0.05 μg mL1 form-cresol. Reproducibility and repeatability, expressed as relative standard deviation, ranged from 2.0–3.9% and from 1.0–3.5% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Research Council of Canada, NRC Associate Committee on Scientific Criteria for Environmental Quality,Chlorinated Phenols: Criteria for Environmental quality, Publication no. 18578, Ottawa (Microfiche),1982.

  2. Shang-Zhi, S.; Stanley, G.J. Chromatogr. 1983,267, 183.

    Article  Google Scholar 

  3. Bately, G.E.J. Chromatogr. 1987,389, 208.

    Google Scholar 

  4. Lindstrom, K.; Nordin, J.J. Chromatogr. 1976,128, 13.

    Article  CAS  Google Scholar 

  5. Ogan, K.; Katz, E.Anal. Chem. 1981,53, 160.

    CAS  Google Scholar 

  6. di Corcia, A.J. Chromatogr. 1973,80, 69.

    Article  Google Scholar 

  7. Buryan, P.; Macak, J.; Hrivna, J.J. Chromatogr. 1977,137, 425.

    Article  CAS  Google Scholar 

  8. Hoshika, Y.J. Chromatogr. 1977,144, 181.

    Article  CAS  Google Scholar 

  9. Seiber, J.N.; Crosby, D.G.; Fonda, H.; Soderquist, C.J.J. Chromatogr. 1972,73, 89.

    Article  CAS  Google Scholar 

  10. Agauer, R.J.Anal. Chem. 1968,40, 122.

    Article  Google Scholar 

  11. Korenman, Y.I.; Gruzdev, I.V.; Kondratenok, B.M.; Fokin, V.N.J. Anal. Chem. 1999,54(12), 1134.

    CAS  Google Scholar 

  12. Nakamura, S.; Takino M.; Dasihima, S.Analyst 2001,126(6), 3089.

    Article  Google Scholar 

  13. Edgerton, T.R.; Moseman, R.F.; Linder, R.E.; Wright, L.J. Chromatogr. 1979,170, 331.

    Article  CAS  Google Scholar 

  14. Song, J.O.Fenxi Shinyanshi 2000,19(6), 96.

    CAS  Google Scholar 

  15. Lehtonen, M.Chromatographia 1982,16, 201.

    Article  CAS  Google Scholar 

  16. Sharma, C.; Kumar, S.J. Environ. Monit. 1999,1(16), 569.

    Article  CAS  Google Scholar 

  17. Kuch, H.M.; Ballschmiter, K.Environ. Sci. Technol. 2001,35(15), 3201.

    Article  CAS  Google Scholar 

  18. Li, D.H.; Park, J.M.; Oh, J.R.Anal. Chem. 2001,73(13), 3089.

    Article  CAS  Google Scholar 

  19. Sojo, L.E.; Djauhari, J.J. Chromatogr. A 1999,840(1), 21.

    Article  CAS  Google Scholar 

  20. Turnes, I.; Rodríquez, I.; García, C.M.; Cela, R.J. Chromatogr. A 1996,743(2), 283.

    Article  CAS  Google Scholar 

  21. Luque-García, J.L.; Luque de Castro, M.D.Analyst 2002,127, 1115.

    Article  Google Scholar 

  22. Davis, J.; Moorcroft, M.J.; Wilkins, S.J.; Compton, R.G.; Cardosi, M.F.Electroanalysis 2000,12(17) 1363.

    Article  CAS  Google Scholar 

  23. Helaleh, M.I.H.; Takabayashi, Y.; Fujii, S.; Korenaga, T.Anal. Chim. Acta 2001,428(2), 227.

    Article  CAS  Google Scholar 

  24. Allonier A.S.; Khalanski, M.; Camel, V.; Bermond, A.Talanta 1999,50(1) 227–236

    Article  CAS  Google Scholar 

  25. Davi, M.L.; Liboni, M.; Malfatto, M.G.Int. J. Environ. Anal. Chem. 1999,74(14), 155.

    CAS  Google Scholar 

  26. Kim, K.R.; Kim, H.J. Chromatogr. A 2000,866(1), 87.

    Article  CAS  Google Scholar 

  27. Buchholz, D.K.; Pawliszyn, J.Anal. Chem. 1994,66, 160.

    Article  CAS  Google Scholar 

  28. Sotnikov, E.E.J. Anal. Chem. 1998,53(3), 286.

    CAS  Google Scholar 

  29. Mataix, E.; Luque de Castro, M.D.Chromatographia 2000,52, 205.

    Article  CAS  Google Scholar 

  30. Priego-López, E.; Luque de Castro, M.D.J. Chromatogr. A 2002,976, 399.

    Article  Google Scholar 

  31. Vallejo, B.; Richter, P.; Toral, I.; Tapia, C.; Luque de Castro, M.D.Anal. Chim. Acta 2001,436(2), 301.

    Article  CAS  Google Scholar 

  32. Llompart-Vizoso, M.P.Tratamiento de muestra en la determinación de compuestos fenólicos por cromatografía de gases, PhD Thesis, University of Santiago de Compostela,1996.

  33. Massart, D.L.; Vanderginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J.Handbook of Chemometrics and Qualimetrics, Part A, Elsevier, Amsterdam,1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priego-López, E., Luque de Castro, M.D. Ultrasound-assisted derivatization of phenolic compounds in spiked water samples before pervaporation, gas chromatographic separation, and flame lonization detection. Chromatographia 57, 513–518 (2003). https://doi.org/10.1007/BF02492550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02492550

Key Words

Navigation