, Volume 56, Issue 11–12, pp 745–751 | Cite as

Comparison of the performance of analytical methods based on solid-phase extraction and on solid-phase microextraction for the determination of antifouling booster biocides in natural waters

  • I. K. Konstantinou
  • D. G. Hela
  • D. A. Lambropoulou
  • V. A. Sakkas
  • T. A. Albanis
Originals Solid Phase Extraction


Analytical procedures based on solid-phase extraction (SPE) and solid-phase microextraction (SPME) have been compared for the determination of four organic booster biocides used in marine antifouling paints (irgarol 1051, dichlofluanid, chlorothalonil, and sea-nine 211). Both techniques were coupled with gas chromatography with electron-capture, flame-thermionic, and mass-spectrometric detection. Recovery studies in spiked samples of water of different origin (distilled, lake, river, and sea water) demonstrated that Irgarol 1051, sea nine 211, and chlorothalonil were extracted efficiently (recovery>75%) with C18 and SDB disks whereas extraction of dichlofluanid was moderate or insufficient (≤65%). With AC disks careful extraction procedures are needed for efficient extraction of dichlofluanid, sea-nine 211, and irgarol 1051; chlorothalonil was difficult to desorb (recovery <60%). In SPME both fibers could be used to extract all the biocides with relatively high recoveries (65–118%). SPME is a more efficient multiresidue technique for the tested biocides than SPE, which requires the use of different adsorbents for determination of biocides. Very low limits of detection (0.4–20 ng L−1) can be achieved with both SPE and SPME under optimized conditions, and their potential for trace-level screening of natural waters for antifouling biocides is demonstrated. The methods were applied to the analysis of the antifouling biocides in samples of sea water from Greek marinas.

Key Words

Solid-phase extraction Solid-phase microextraction Water analysis Antifouling biocides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Readman, J.W.; Kwong, L.L.W.; Grondin, D.; Bartocci, J.; Villeneuve, J.P.; Mee, L.D.Environ. Sci. Technol. 1993,27, 1940–1942.CrossRefGoogle Scholar
  2. [2]
    Martinez, K.; Ferrer, I.; Barcelo, D.J. Chromatogr. A 2000,879, 27–37.CrossRefGoogle Scholar
  3. [3]
    Tolosa, I.; Readman, J.W.; Blaevoet, A.; Ghilini, S.; Bartocci, J.; Horvat, M.Mar. Pollut. Bull. 1996,32, 335–341.CrossRefGoogle Scholar
  4. [4]
    Scarlett, A.; Donkin, M.E.; Fileman, T.W.; Donkin, P.Mar. Pollut. Bull. 1997,34, 645–651.CrossRefGoogle Scholar
  5. [5]
    Toth, S.; Becker-van Slooten, K.; Spack, L.; Alencastro, L.F.; Tarradellas, J.Bull. Environ. Contam. Toxicol. 1996,57, 426–433.CrossRefGoogle Scholar
  6. [6]
    Ferrer, I.; Barcelo, D.J. Chromatogr. A 1999,854, 197–206.CrossRefGoogle Scholar
  7. [7]
    Tolosa, I.; Readman, J.W.Anal. Chim Acta 1996,335, 267–274.CrossRefGoogle Scholar
  8. [8]
    Gough, M.A.; Fothergill, J.; Hendrie, J.D.Mar. Pollut. Bull. 1994,28, 613–620.CrossRefGoogle Scholar
  9. [9]
    Ferrer, I.; Ballesteros, B.; Marco, M.P.; Barcelo, D.Environ. Sci. Technol. 1997,31, 3530–3535.CrossRefGoogle Scholar
  10. [10]
    Steen, R.J.C.A.; Leonards, P.E.G.; Brinkman, U.A.Th.; Cofino, W.P.J. Chromatorg. A 1997,766, 153–158.CrossRefGoogle Scholar
  11. [11]
    Thomas, K.V.J. Chromatogr. A 1998,825, 29–35.CrossRefGoogle Scholar
  12. [12]
    Pocurull, E.; Brossa, L.; Borrull, F.; Marcé, R.M.J. Chromatogr. A 2000,885, 361–368.CrossRefGoogle Scholar
  13. [13]
    Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N.Chemosphere,1999,38, 3503–3516.CrossRefGoogle Scholar
  14. [14]
    Barcelo, D.; Hennion, M.-C.Anal. Chim. Acta 1995,318, 1–41.CrossRefGoogle Scholar
  15. [15]
    Hu, R.; Berthion, J.M.; Bodereau, I.; Fournier, J.Chromatographia 1996,43, 181–186.CrossRefGoogle Scholar
  16. [16]
    Penãlver, A.; Pocurull, E.; Borrull, F.; Marcé, R.M.J. Chromatogr. A 1999,839, 253–260.CrossRefGoogle Scholar
  17. [17]
    Lambropoulou, D.; Konstantinou, I.; Albanis, T.J. Chromatogr. A 2000,893, 143–156.CrossRefGoogle Scholar
  18. [18]
    Tolosa, I.; Douy, B.; Carvalho, F.P.J. Chromatogr. A 1999,864, 121–136.CrossRefGoogle Scholar
  19. [19]
    Di Gorcia, A.; Marchetti, M.Anal. Chem. 1991,63, 580–585.CrossRefGoogle Scholar
  20. [20]
    Crescenzi, C.; Dicorcia, A.; Marcomini, A.; Samperi, R.Anal. Chem. 1995,67, 1797–1804.CrossRefGoogle Scholar
  21. [21]
    Hennion, M.C.J. Chromatogr. A. 2000,885, 73–95.CrossRefGoogle Scholar
  22. [22]
    Slobodník, J.; Öztezkizan, Ö.; Lingeman, H.; Brinkman, U.A.Th.J. Chromatogr. A 1996,750, 227–238.CrossRefGoogle Scholar
  23. [23]
    Sabik, H.; Jeannot, R.J. Chromatogr. A 1998,818, 197–207.CrossRefGoogle Scholar
  24. [24]
    Rodríguez, I.; Mejuto, M.C.; Bollaín, M.H.; Cela, R.J. Chromatogr. A 1997,786, 285–292.CrossRefGoogle Scholar
  25. [25]
    Soriano, J.M.; Jiménez, B.; Redondo, M.J.; Moltó, J.C.J. Chromatogr. A 1998,822, 67–73.CrossRefGoogle Scholar
  26. [26]
    Sennert, S.; Volmer, D.; Levsen, K.; Wünsch, G.Fresenius J. Anal. Chem. 1995,351, 642–649.CrossRefGoogle Scholar
  27. [27]
    Puig, D.; Barceló, D.J. Chromatogr. A,1996,733, 371–381.CrossRefGoogle Scholar
  28. [28]
    Hela, D.; Sakellarides, Th.; Konstantinou, I.; Albanis, T.Int. J. Environ. Anal. Chem. 1997,68, 69–82.Google Scholar
  29. [29]
    Munch, D.J., Method 526, Revision 1.0 (2000)Determination of Selected Semivolatile Organic Compounds in Drinking Water by Solid-Phase Extraction and Capillary Column Gas Chromatography/Mass Spectroscopy (GC/MS), US Environmental Protection Agency, Cincinnati, OH,2000.Google Scholar
  30. [30]
    Sakkas, V.; Konstantinou, I.; Lambropoulou, D.; Albanis, T.Environ. Sci Poll. Res. 2002,9 (5), 327–332.CrossRefGoogle Scholar
  31. [31]
    Sakkas, V.; Konstantinou, I.; Albanis, T.J. Chromatogr. 2002,959, 215–227.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2002

Authors and Affiliations

  • I. K. Konstantinou
    • 1
  • D. G. Hela
    • 1
  • D. A. Lambropoulou
    • 1
  • V. A. Sakkas
    • 1
  • T. A. Albanis
    • 1
  1. 1.Department of ChemistryUniversity of loanninaloanninaGreece

Personalised recommendations