Advertisement

Chromatographia

, Volume 56, Issue 11–12, pp 679–686 | Cite as

The theoretical study of the effect of packing heterogeneity on HPLC by computational fluid dynamics

  • Y. X. Wu
  • C. B. Ching
Originals Column Liquid Chromatography

Summary

Based on the assumption of a radial parabolic porosity distribution across a chromatographic column and an ideal distribution and collection system for the column, a theoretical study of the effect of heterogeneous packing on the behavior of chromatography was conducted using Computational Fluid Dynamics (CFD) simulation. This study examined the development of the velocity distribution in columns with different porosity variations and different diameters, visualized the effect of velocity distribution on concentration profiles inside the column and the eluted pulses at the exit and finally the column efficiency. Therefore, this study is helpful to enhance the understanding to the effect of packing quality on chromatography. The final result suggests that packing heterogeneity in current widely used chromatographic columns might seriously impair the separation efficiency of the columns.

Key Words

Column liquid chromatography Heterogeneous packing Computational fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Knox, J.H.; Laird, G.R.; Raven, P.A.J. Chromatogr. 1976,122, 129–145.CrossRefGoogle Scholar
  2. [2]
    Eon, C.H.J. Chromatogr. 1978,149, 29–42.CrossRefGoogle Scholar
  3. [3]
    Baur, J.E.; Kristensen, E.W., Wightman, R.M.Anal. Chem. 1988,60, 2334–2338.CrossRefGoogle Scholar
  4. [4]
    Baur, J.E.; Wightman, R.M.J. Chromatogr. 1989,482, 65–73.CrossRefGoogle Scholar
  5. [5]
    Farkas, T.; Chambers, J.Q.; Guiochon, G.J. Chromatogr. A 1994,679, 231–245.CrossRefGoogle Scholar
  6. [6]
    Fernandez, E.J.; Grotegut, C.A.; Braun, G.W.; Kirshner, K.J.; Staudaher, J.R.; Dickson, M.L.; Fernandez, V.L.Phys. Fluids 1995,7, 468–477.CrossRefGoogle Scholar
  7. [7]
    Bayer, E.; Müller, W.; Ilg, M.; Albert, K.Angew. Chem. Int. Ed. 1989,28, 1029–1032.CrossRefGoogle Scholar
  8. [8]
    Tallarek, U.; Baumeister, E.; Albert, K.; Bayer, E.; Guiochon, G.J. Chromatogr. A 1995,696, 1–18.CrossRefGoogle Scholar
  9. [9]
    Sarker, M.; Katti, A.M.; Guiochon, G.J. Chromatogr. A 1996,719, 275–289.CrossRefGoogle Scholar
  10. [10]
    Guiochon, G.; Farkas, T.; Hong, G.-S.; Koh, J.-H.; Sarker, M.; Stanley, B.J.; Yun, T.J. Chromatogr. A 1997,762, 83–88.CrossRefGoogle Scholar
  11. [11]
    Yun, T.; Guiochon, G.J. Chromatogr. A 1996,734, 97–103.CrossRefGoogle Scholar
  12. [12]
    Farkas, T.; Sepaniak, M.J.; Guiochon, G.J. Chromagr. A 1996,740, 169–181.CrossRefGoogle Scholar
  13. [13]
    Farkas, T.; Sepaniak, M.J.; Guiochon, G.AIChE J. 1997,43, 1964–1974.CrossRefGoogle Scholar
  14. [14]
    Miyabe, K.; Guiochon, G.J. Chromatogr. A 1999,830, 263–274.CrossRefGoogle Scholar
  15. [15]
    Yun, T.; Guichon, G.J. Chromatogr. A 1997,760, 17–34.CrossRefGoogle Scholar
  16. [16]
    Lode, F.G.; Rosenfeld, A.; Yuan, Q.S.; Root, T.W.; Lightfoot, E.N.J. Chromatogr. A 1998,796, 3–14.CrossRefGoogle Scholar
  17. [17]
    Colenbrander, G.W.Appl. Sci. Res. 1991,48, 211–245.CrossRefGoogle Scholar
  18. [18]
    Harris, C.K.; Roekaerts, D.; Rosendal, F.J.J.; Buitendijk, F.G.J.; Daskopoulos, Ph.; Vreenegoor, A.J.N.; Wang, H.Chem. Eng. Sci. 1996,51, 1569–1594.CrossRefGoogle Scholar
  19. [19]
    Kuipers, J.A.M.; van Swaaij, W.P.M.Rev. Chem. Eng. 1997,13, 1–118.Google Scholar
  20. [20]
    User's Guide of FLUENT 4.5, FLUENT Inc.1992.Google Scholar
  21. [21]
    Ruthven, D.M. Principles of Adsorption and Adsorption processes. John Wiley & Sons, Inc., New York,1984.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2002

Authors and Affiliations

  • Y. X. Wu
    • 1
  • C. B. Ching
    • 1
  1. 1.Department of Chemical and Environmental EngineeringNational University of SingaporeSingapore

Personalised recommendations