Skip to main content
Log in

Use of neural networks and diode-array detection to develop an isocratic HPLC method for the analysis of nitrophenol pesticides and related compounds

  • Originals
  • Column Liquid Chromatography
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

We have used an artificial neural network to optimize the composition of the mobile phase for an isocratic HPLC method for the analysis of nitrophenol pesticides and related compounds, on the basic of different response functions, and have compared the results with those obtained by application of response-surface methodology. These studies resulted in the selection the mobile phase 10:30:15:45 methanol-acetonitrile-tetrahydrofuran-buffer solution (0.1m acetic acid and 0.1m sodium perchlorate); the flow-rate was 1 mL min−1. Under these conditions a chromatogram showing twelve well-resolved peaks was obtained in 14 min. Although the peaks corresponding to ethylparathion and medinoterb acetate overlapped severely, it was possible, by use, of a diode-array spectrophotometer for detection, and by combining the absorbance measured at different wavelengths as the signal, to separate the peaks corresponding to one or other of the compounds. Calibration plots were constructed for the concentration range 2–10 ppm. Detection limits, calculated by the method of Clayton et al., were approximately 0.32–0.69 ppm. The method has been applied to the analysis of these compounds in fortified river water samples, after previous preliminary preconcentration by solid-liquid extraction on a C18 cartridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wegman, R.C.C.; Wammes, J.J.Med. Fac. Landbouww, Rijksuniv, Gent1983,48/4, 961–969.

    Google Scholar 

  2. Krause, K.T.; Wang, Y.J. Chromatogr. 1988,459, 151–162.

    Article  CAS  Google Scholar 

  3. Yao, S.; Meyer, A.; Henze, G.Fresenius J. Anal. Chem. 1991,339, 207–211.

    Article  CAS  Google Scholar 

  4. Roseboom, H.; Berkhoff, C.J.; Wammes, J.J.; Wegman, R.C.C.J. Chromatogr. 1981,208, 331–337.

    Article  CAS  Google Scholar 

  5. Ameno, K.; Fuke, C.; Ameno, S.; Kinoshita, H.; Shirakawa, Y.; Ijiri, I.J Liq. Chromatogr. 1995,18, 2123–2131.

    CAS  Google Scholar 

  6. Clark, G.J.; Goodin, R.R.; Smiley, J.W.Anal. Chem. 1985,57, 2223–2228.

    Article  CAS  Google Scholar 

  7. Puig, D.; Barceló, D.Anal. Chim. Acta 1995,311, 63–69.

    Article  CAS  Google Scholar 

  8. Nelder, J.A.; Mead, R.Comput. J. 1965,7, 308.

    Google Scholar 

  9. Routh, M.W.; Swartz, P.A.; Denton, M.B.Anal. Chem. 1977,49, 1422–1428.

    Article  CAS  Google Scholar 

  10. Umeda, T.; Ichikawa, A.Ind. Eng. Chem., Process, Des. Develop. 1971,10, 229–236.

    Article  CAS  Google Scholar 

  11. Ryan, P.B.; Barr, R.L.; Todd, H.D.Anal. Chem. 1980,52, 1460–1467.

    Article  CAS  Google Scholar 

  12. Betteridge, D.; Wade, A.P.Talanta 1985,32, 709–722.

    Article  CAS  Google Scholar 

  13. Betteridge, D.; Wade, A.P.Talanta 1985,32, 723–734.

    Article  CAS  Google Scholar 

  14. Burtis, C.A.; Bostick, W.D.; Overton, J.B.; Mrochek, J.E.Anal. Chem.,1981,53, 1154–1159.

    CAS  Google Scholar 

  15. Llompart, M.P.; Lorenzo, R.A.; Cela, R.; Paré, J.R.J.Analyst 1997,122, 133–137.

    Article  CAS  Google Scholar 

  16. Zupan, J.; Gasteiger, J.Neural Networks for Chemists, VCH, Weinheim,1993, p. 197.

    Google Scholar 

  17. Guo, W.; Zhu, R.; Brodowsky, H.Talanta 1997,44, 1995–2001.

    Article  CAS  Google Scholar 

  18. Unscrambler v. 6.11, CAMO A/S Olav Tryggvasonsgt, N-7011, Trondheim, Norway.

  19. Cuadros, L.; Garcia, A.M.; Jiménez, C.; Román, M.Anal. Lett. 1993,26(6), 1243–1258.

    Google Scholar 

  20. Clayton, C.A.; Hines, J.W.; Elkins, P.D.Anal. Chem. 1987,59, 2506–2514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galeano Diaz, T., Guiberteau, A., Ortiz, J.M. et al. Use of neural networks and diode-array detection to develop an isocratic HPLC method for the analysis of nitrophenol pesticides and related compounds. Chromatographia 53, 40–46 (2001). https://doi.org/10.1007/BF02492425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02492425

Key words

Navigation