Chromatographia

, Volume 55, Issue 11–12, pp 693–699 | Cite as

Determination of trypsin, chymotrypsin and kallikrein in porcine pancreas extracts by capillary zone electrophoresis

  • F. Braca
  • F. Secco
  • M. Spinetti
  • G. Raspi
Originals Electrophoresis

Summary

A new method for the direct detection of trypsin, chymotrypsin A and kallikrein from porcine pancreas by capillary zone electrophoresis is proposed. Optimum conditions for quantitative determination were investigated which also allow the unequivocal distinction of trypsin and chymotrypsin according to porcine or bovine source. For each enzyme good linearity and precision were obtained, with a detection limit of 5.0 μg mL−1. In addition, the formation of the complexes between trypsin and basic pancreatic trypsin inhibitor, as well as that between kallikrein and the same inhibitor, have been investigated. Such complexes can be clearly distinguished either from the unreacted enzyme or the excess inhibitor and their use for analytical purposes has been evidenced. The method is rapid and sensitive and has been applied to determine enzymes in several porcine pancreas extracts. The levels of the active compounds in various kinds of commercial preparations were easily determined with relative standard deviations ranging between 3.3 and 4.9%, and recoveries from 95.8% to 102.4%.

Key Words

Capillary zone electrophoresis Hydrophobic interaction chromatography Pancreatic proteases Aprotinin Porcine pancreas extracts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Layer, P.; Groger, G.Digestion 1993,54 (suppl.2), 10–14.Google Scholar
  2. [2]
    Lankish, P.G.Digestion 1993,54 (suppl.2), 21–29.Google Scholar
  3. [3]
    Gullo, L.Digestion 1993,54 (suppl.2), 43–47.CrossRefGoogle Scholar
  4. [4]
    Murray, M.T.; Pizzorno, J. InEncyclopedia of Natural Medicine 2nd ed. Prima Publishing, Rocklin, CA;1998.Google Scholar
  5. [5]
    Nakamura, T.; Tandoh, Y.; Terada, A.; Yamada, N.; Watanabe, T.; Kaji, A.; Imamura, K.; Kikuchi, H.; Suda, T.Internat. J. Pancreatol. 1998,23, 63–70.Google Scholar
  6. [6]
    Oelgoetz, A.W.; Oelgoetz, P.A.; Wittenkind, J.Am. J. Dig. Dis. Nutr. 1935,2, 422–26.Google Scholar
  7. [7]
    Kleine, M.W.; Stauder, G.M.; Beese, E.W.Phytomedicine 1995,2, 27–15.Google Scholar
  8. [8]
    Avakian, S.Clin. Pharmacol. Ther. 1964,5, 712–715.Google Scholar
  9. [9]
    Ambrus, J.L.; Lassman, H.B.; DeMarchi, J.J.Clin. Pharmacol. Ther. 1967,8, 362–368.Google Scholar
  10. [10]
    Deitrick, R.E.Pennsylvania Med. J. Oct.1965, 35–37.Google Scholar
  11. [11]
    Wolf, M.; Ransberger, K.Osterr.Z. Erforsch. Bekampf. Krebskr. 1972,27, 269–275.Google Scholar
  12. [12]
    Weiler, A.; Stoeva, S.; Lehmann, R.; Grübler, G.; Paulus, G.; Voelter, W.Electrophoresis 1996,17, 518–522.CrossRefGoogle Scholar
  13. [13]
    Adachi, M.; Shibata, K.; Shioi, A.; Harada, M.; Katoh, S.Biotechnol. Bioeng. 1998,58, 649–653.CrossRefGoogle Scholar
  14. [14]
    Guyonnet, V.; Thuscik, F.; Long, P.L.; Polanowski, A.; Travis, J.J. Chromatogr. A 1999,852, 217–225.CrossRefGoogle Scholar
  15. [15]
    Lainé, J.; Beattie, M.; LeBel, D.Pancreas 1993,8, 383–386.CrossRefGoogle Scholar
  16. [16]
    Gestin, M.; Le Huerou-Luron, I.; Peiniau, J.; Thioulouse, E.; Desbois, C.; Le Drean, G.; Feldman, D.; Aumaitre, A.; Gouilloteau, P.Dig. Dis. Sci. 1997,42, 1302–1311.CrossRefGoogle Scholar
  17. [17]
    USP24, 1254–1255.Google Scholar
  18. [18]
    EuP-Supplement 2000, 1029–1032.Google Scholar
  19. [19]
    Raspi, G.; Lo Moro, A.; Spinetti, M.Chromatographia 1993,35, 381–386.CrossRefGoogle Scholar
  20. [20]
    Raspi, G.; Lo Moro, A.; Spinetti, M.Chromatographia 1993,37, 471–474.CrossRefGoogle Scholar
  21. [21]
    Bergeron, L.; de Médicis, E.Can. J. Biochem. 1974,52, 423–428.Google Scholar
  22. [22]
    Raspi, G.; Lo Moro, A.; Spinetti, M.J. Chromatogr. 1992,593, 119–123.CrossRefGoogle Scholar
  23. [23]
    Kassel, B.; Radicevich, M.; Berlow, S.; Peanasky, R.J.; Laskowski, M.Sr.J. Biol. Chem. 1963,238, 3274–3279.Google Scholar
  24. [24]
    Travis, J.; Liener, I.E.J. Biol. Chem. 1965,240, 1962–1966.Google Scholar
  25. [25]
    Laskowski, M.Methods Enzymol. 1955,2, 8–26.Google Scholar
  26. [26]
    de Médicis, E.; Bergeron, L.Can. J. Biochem. 1975,53, 1101–1105.CrossRefGoogle Scholar
  27. [27]
    Fiedler, F.; Leysath, G.; Werle, E.Eur. J. Biochem. 1973,36, 152–159.CrossRefGoogle Scholar
  28. [28]
    Vincent, J.P.; Lazdunski, M.FEBS Lett. 1976,63, 240–244.CrossRefGoogle Scholar
  29. [29]
    Raspi, G.; Lo Moro, A.; Spinetti, M.Chromatographia 1993,35, 93–96.CrossRefGoogle Scholar
  30. [30]
    Fritz, H.; Wunderer, G.Arzneim.-Forsch. Drug Res. 1983,33, 479–494.Google Scholar
  31. [31]
    Markley, J.L.; Porubean, M.A.J. Mol. Biol,1976,102, 487–509.CrossRefGoogle Scholar
  32. [32]
    Righetti, P.; Tudor, G.J. Chromatogr.,1981,220, 115–194.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2002

Authors and Affiliations

  • F. Braca
    • 1
  • F. Secco
    • 1
  • M. Spinetti
    • 1
  • G. Raspi
    • 2
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.Istituto di Chimica Analitica StrumentaleCNR Area della Ricerca di PisaPisaItaly

Personalised recommendations