Use of optimization software for comparing stationary phases in order to find HPLC conditions suitable for separating 16 PAHs

Summary

The 16 polycyclic aromatic hydrocarbons (PAHs) listed as water priority pollutants are generally analyzed under gradient elution mode on a silica-based stationary phase with polymeric octadecyl grafts. Separation is not possible, in isocratic mode, on such phases due to the wide retention range of these PAHs.

Isocratic elution, however when possible, is much more attractive for various reasons such as: less complex apparatus, better inter-laboratory reproducibility and increased column life.

To set good analysis conditions in isocratic mode, six different stationary phases were studied, using “Osiris” optimization software. For each, temperature and mobile phase composition were simultaneously optimized using a response function that takes into account three important criteria: separation quality, analysis time and robustness of analytical conditions.

The various stationary phases have been compared from the results obtained and optimum conditions for elution in isocratic mode have been established for a silica-based stationary phase grafted to a pyrene group. The resulting separation was shown to be totally comparable, for its quality and analysis time, with the separation obtained by the classical method using gradient elution, furthermore, these conditions proved advantageous in terms of robustness.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. Grazfeld-Hüsgen, R. Schuster, H. Schulenberger-Schell, Int. Lab.6, 15 (1994)

    Google Scholar 

  2. [2]

    P. Garrigues, M. Lamotte, in Polyciclic aromatic compounds, synthesis, properties, analytical measurements, occurrence and biological effects, PAHS XIII Gordon and breach science publishers (1991)

  3. [3]

    K.G. Furton, E. Jolly, G. Pentzke, J. Chromatogr.,642, 33 (1993).

    CAS  Article  Google Scholar 

  4. [4]

    E. Lesellier, Analusis, accepted (1999)

  5. [5]

    S.A. Wise, L.C. Sander, W.E. May, J. Chromatogr.,642, 329 (1993).

    CAS  Article  Google Scholar 

  6. [6]

    EPA test method, PAH method 610. Environmental Protection Agency, Environmental Monitoring and support Laboratory, Cincinati, OH, July 1982.

  7. [7]

    S. Heron, A. Tchapla, Chromatographia,36, 11(1993).

    CAS  Article  Google Scholar 

  8. [8]

    M. Olsson, L.C. Sander, S.A. Wise, J. Chromatogr.,537, 73 (1991).

    CAS  Article  Google Scholar 

  9. [9]

    W. Hesselink, R.H.M.A. Schiffer, P.R. Kootstra, J. Chromatogr. A,697, 165 (1995).

    CAS  Article  Google Scholar 

  10. [10]

    L.C. Sander, R.M. Parris, S.W. Wise, P. Garrigues, Anal. Chem.63, 2589 (1991).

    CAS  Article  Google Scholar 

  11. [11]

    S. Goga Rémont, PhD thesis, (1998) Lyon, France.

  12. [12]

    P.L. Zhu, L.R. Snyder, J.W. Dolan, N.M. Djordjevic, D.W. Hill, L.C. Sander, T.J. Waeghe, J. Chromatogr. A,756, 21 (1996).

    CAS  Article  Google Scholar 

  13. [13]

    B. Ooms, LC-GC,9, 574 (1996).

    Google Scholar 

  14. [14]

    H. Colin, J.C. Carlos Diez-Masa, G. Guiochon, T. Czajkowska, I. Miedzak, J. Chromatogr.167, 41 (1978).

    CAS  Article  Google Scholar 

  15. [15]

    F.V. Warren, B.A. Bidlingmeyer, Anal. Chem.,60, 2821 (1988).

    CAS  Article  Google Scholar 

  16. [16]

    P.J. Schoenmakers, H.A.H. Billiet, L. de Galan. J. Chromatogr.,185, 179 (1979).

    CAS  Article  Google Scholar 

  17. [17]

    L.R. Snyder, J.W. Dolan, J.R. Gant, J. Chromatogr.,165, 3 (1979).

    CAS  Article  Google Scholar 

  18. [18]

    S. Heinisch, J.L. Rocca, M. Feinberg, J. Chemom.,3, 127 (1988).

    CAS  Article  Google Scholar 

  19. [19]

    M.A. Quarry, R.L. Grob, L.R. Snyder, Anal. Chem.,58, 907 (1986).

    CAS  Article  Google Scholar 

  20. [20]

    P. Jandera, J. Churacek, in Gradient elution in column liquid chromatography, Elsevier, Amsterdam (1985)

    Google Scholar 

  21. [21]

    L.R. Snyder, J. Glajach, J. J. Kirkland, in Practical HPLC Method Development, John Wiley & Sons, 1988.

  22. [22]

    S. Heinisch, P. Riviere, J.J. Rocca, Chromatographia,36, 157 (1993).

    CAS  Article  Google Scholar 

  23. [23]

    B. Ooms, LC-GC,9, 574 (1996).

    Google Scholar 

  24. [24]

    W.R. Melander, B.K. Chen, C. Horváth, J. Chromatogr. A,185, 99 (1979).

    CAS  Article  Google Scholar 

  25. [25]

    J.R. Gant, J.W. Dolan, L.R. Snyder, J. Chromatogr. A,185, 153 (1979).

    CAS  Article  Google Scholar 

  26. [26]

    E.C. Harrington, Ind. Quality Control,21, 494 (1965).

    Google Scholar 

  27. [27]

    S. Goga, S. Heinisch, J.L. Rocca, in Use of an optimization software for the good predictions of rugged analysis conditions in RP-HPLC, HPLC'98, Saint-Louis-USA, 1998.

  28. [28]

    S. Goga-Remont, S. Heinisch, J.L. Rocca, submitted to J. Chromatogr.

  29. [29]

    P.J. Schoenmakers, J.K. Straters, A. Bartha, J. Chromatogr.,458, 355 (1988).

    CAS  Article  Google Scholar 

  30. [30]

    S. Heinsch, J.L. Rocca, Chromatographia,41, 544 (1995).

    Article  Google Scholar 

  31. [31]

    S.A. Wise, W.J. Bonnett, F.R. Guenther, W.E. May, J. Chromatogr. Sc.,19, 457 (1981).

    CAS  Google Scholar 

  32. [32]

    S.A. Wise, L.C. Sander, J. HRC & CC,8, 248 (1985).

    CAS  Google Scholar 

  33. [33]

    E. Katz, K. Ogan, Chromatogr. Newslett.,8, 20 (1980).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goga-Rémont, S., Heinisch, S., Lesellier, E. et al. Use of optimization software for comparing stationary phases in order to find HPLC conditions suitable for separating 16 PAHs. Chromatographia 51, 536–544 (2000). https://doi.org/10.1007/BF02490810

Download citation

Key Words

  • Column liquid chromatography
  • Stationary phases
  • Temperature optimization
  • Mobile phase optimization
  • Polycyclic aromatic hydrocarbons