Skip to main content
Log in

Theoretical optimization of analyte collection in analytical supercritical fluid extraction

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Optimizing the extracted analyte collection step in analytical supercritical fluid extraction (SFE) is of key importance in achieving high analyte recoveries and extraction efficiencies. Whereas the extraction step in SFE has been well characterized both theoretically and experimentally; the analyte collection step after SFE has few theoretical guidelines, aside from a few empirical studies which have appeared in the literature. In this study, we have applied several theoretical approaches using experimental data to optimize analyte trapping efficiency in SFE. A vapour-liquid equilibrium model has been formulated to predict the trapping efficiency for extracted solute collection in a open collection vessel. Secondly, a simple solution thermodynamic model for predicting solute (analyte) activity coefficients in various trapping solvents has been shown to have utility in predicting collection efficiencies. Finally, effective trapping efficiency after SFE using sorbent media is related to the extent of analyte breakthrough on the sorbent-filled trap after depressurization of supercritical fluid. Using experimental data determined via physico-chemical gas chromatographic measurements (i. e., specific retention volumes), we have shown the relationship between analyte breakthrough volume off of the trapping sorbent and volume of depressurized fluid through the collection trap. The above theoretical guidlines should prove of value to analysts in designing and optimizing the best conditions for trapping analytes after extraction via analytical SFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. J. W. King, J. Chromatographic Sci.,27, 355 (1989).

    CAS  Google Scholar 

  2. L. T. Taylor, Supercritical Fluid Extraction, Wiley-Interscience, New York, 1996.

    Google Scholar 

  3. J. W. King, J. E. France, in B. Wenelawiak, Ed., Analysis with Supercritical Fluids: Extraction and Chromatography, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  4. K. D. Bartle, A. A. Clifford, in F.B. Padley, Ed., Advances in Applied Lipid Research, JAI Press Ltd., London, 1992, pp. 229–239.

    Google Scholar 

  5. S. M. Hitchen, J. R. Dean, in J.R. Dean, Ed., Application of Supercritical Fluids in Industrial Analysis, Blackie Academic, Glascow, 1993, pp. 1–12.

    Google Scholar 

  6. T. Clifford, Fundamentals of Supercritical Fluids, Oxford University Press, Oxford, 1999, Chapter 5.

    Google Scholar 

  7. A. A. Clifford, in E.D. Ramsey, Ed., Analytical Supercritical Fluid Extraction Techniques, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, Chapter 1.

    Google Scholar 

  8. L. J. Mulcahey, L. T. Taylor, Anal. Chem.64, 2352 (1992).

    Article  CAS  Google Scholar 

  9. D. J. Miller, S. B. Hawthorne, M. E. P McNally, Anal. Chem.65, 1038 (1993).

    Article  CAS  Google Scholar 

  10. J. W. King, J. H. Johnson, J. P. Friedrich, J. Agric. Food Chem.37, 951 (1989).

    Article  CAS  Google Scholar 

  11. G. L. McDaniel, L. T. Long, L. T. Taylor, J. High Resolut. Chromatogr.21, 245 (1998).

    Article  CAS  Google Scholar 

  12. P. G. Thompson, L. D. Taylor, B. E. Richter, N. L. Porter, J. L. Ezzell, J. High Resolut Chromatogr.16, 713 (1993).

    Article  CAS  Google Scholar 

  13. P. G. Thompson, L. T. Taylor, J. High Resolut. Chromatogr.17, 759 (1994).

    Article  CAS  Google Scholar 

  14. J. J. Lagenfeld, M. D. Burford, S. B. Hawthorne, D. J. Miller, J. Chromatogr.594, 297 (1992).

    Article  Google Scholar 

  15. J. Vejrosta, P. Karasek, J. Planeta, Anal. Chem.71, 905 (1999).

    Article  CAS  Google Scholar 

  16. P. R. Eckard, L. T. Taylor, J. High Resolut. Chromatogr.19, 117 (1996).

    Article  CAS  Google Scholar 

  17. L. J. Mulcahey, J. L. Hedrick, L. T. Taylor, Anal. Chem.63, 2225 (1991).

    Article  CAS  Google Scholar 

  18. W. N. Moore, L. T. Taylor, Anal. Chem.67, 2030 (1995).

    Article  CAS  Google Scholar 

  19. X. Chaudot, A. Tambute, M. Caude, J. High Resolut. Chromatogr.21, 175 (1998).

    Article  CAS  Google Scholar 

  20. S. L. Taylor, J. W. King, S. E. Abel, Abstracts of the 5th International Symposium on Supercritical Fluid Chromatography and Extraction, Supercritical Conferences, Cincinnati, OH, 1994, D 16–17.

  21. D. Van der Straeten, H. Van Langenhove, N. Schamp, J. Chromatogr.331, 207 (1985).

    Article  Google Scholar 

  22. P. Sandra, F. David, E. Baltusan, T. De Smaele, in A. J. Handley, Ed., Extraction Methods in Organic Analysis, Sheffield Academic Press, Sheffield, England 1999, pp. 244–247.

    Google Scholar 

  23. R. F. Gallant, J. W. King, P. L. Levins, J. F. Piecewicz, Characterization of Sorbent Resins for Use in Environmental Sampling, EPA Report No. 600/7-78-054 March, 1978.

  24. J. J. Manura, The Mass Spec Source 7/94, Scientific Instrument Services, Ringoes, NJ, 1994, pp. 3–11.

    Google Scholar 

  25. R. F. Fedors, Poly. Eng. Sci.14, 147 (1974).

    Article  CAS  Google Scholar 

  26. J. W. King, S. L. Taylor, S. E. Abel, Submitted to Anal. Chem.

  27. R. J. Laub, R. L. Pecsok, Physicochemical Applications of Gas Chromatography, Wiley-Interscience, New York, 1978, pp. 102–103.

    Google Scholar 

  28. J. W. King, in B. A. Charpentier and M. R. Sevenants, Eds., Supercritical Fluids—Chemical and Engineering Principles and Applications, American Chemical Society, Washington, DC, 1987, pp. 150–171.

    Google Scholar 

  29. J. Gmehling, J. Menke, M. Schiller, Activity Coefficients at Infinite Dilution, Dechema, Frankfurt, 1994.

    Google Scholar 

  30. C. Molllmann, J. Gmehling, J. Chem. Eng. Data5, 35 (1997).

    Article  Google Scholar 

  31. A. V. Kiselev, Y. I. Yashin, Gas Adsorption Chromatography, Plenum Press, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Names are necessary to report factually on available data; however the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the products to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J.W., Zhang, Z. Theoretical optimization of analyte collection in analytical supercritical fluid extraction. Chromatographia 51, 467–472 (2000). https://doi.org/10.1007/BF02490486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02490486

Key Words