, Volume 51, Issue 7–8, pp 467–472 | Cite as

Theoretical optimization of analyte collection in analytical supercritical fluid extraction

  • J. W. King
  • Z. Zhang


Optimizing the extracted analyte collection step in analytical supercritical fluid extraction (SFE) is of key importance in achieving high analyte recoveries and extraction efficiencies. Whereas the extraction step in SFE has been well characterized both theoretically and experimentally; the analyte collection step after SFE has few theoretical guidelines, aside from a few empirical studies which have appeared in the literature. In this study, we have applied several theoretical approaches using experimental data to optimize analyte trapping efficiency in SFE. A vapour-liquid equilibrium model has been formulated to predict the trapping efficiency for extracted solute collection in a open collection vessel. Secondly, a simple solution thermodynamic model for predicting solute (analyte) activity coefficients in various trapping solvents has been shown to have utility in predicting collection efficiencies. Finally, effective trapping efficiency after SFE using sorbent media is related to the extent of analyte breakthrough on the sorbent-filled trap after depressurization of supercritical fluid. Using experimental data determined via physico-chemical gas chromatographic measurements (i. e., specific retention volumes), we have shown the relationship between analyte breakthrough volume off of the trapping sorbent and volume of depressurized fluid through the collection trap. The above theoretical guidlines should prove of value to analysts in designing and optimizing the best conditions for trapping analytes after extraction via analytical SFE.

Key Words

Superciritical fluid extraction Optimization of analyte collection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. W. King, J. Chromatographic Sci.,27, 355 (1989).Google Scholar
  2. [2]
    L. T. Taylor, Supercritical Fluid Extraction, Wiley-Interscience, New York, 1996.Google Scholar
  3. [3]
    J. W. King, J. E. France, in B. Wenelawiak, Ed., Analysis with Supercritical Fluids: Extraction and Chromatography, Springer-Verlag, Berlin, 1992.Google Scholar
  4. [4]
    K. D. Bartle, A. A. Clifford, in F.B. Padley, Ed., Advances in Applied Lipid Research, JAI Press Ltd., London, 1992, pp. 229–239.Google Scholar
  5. [5]
    S. M. Hitchen, J. R. Dean, in J.R. Dean, Ed., Application of Supercritical Fluids in Industrial Analysis, Blackie Academic, Glascow, 1993, pp. 1–12.Google Scholar
  6. [6]
    T. Clifford, Fundamentals of Supercritical Fluids, Oxford University Press, Oxford, 1999, Chapter 5.Google Scholar
  7. [7]
    A. A. Clifford, in E.D. Ramsey, Ed., Analytical Supercritical Fluid Extraction Techniques, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, Chapter 1.Google Scholar
  8. [8]
    L. J. Mulcahey, L. T. Taylor, Anal. Chem.64, 2352 (1992).CrossRefGoogle Scholar
  9. [9]
    D. J. Miller, S. B. Hawthorne, M. E. P McNally, Anal. Chem.65, 1038 (1993).CrossRefGoogle Scholar
  10. [10]
    J. W. King, J. H. Johnson, J. P. Friedrich, J. Agric. Food Chem.37, 951 (1989).CrossRefGoogle Scholar
  11. [11]
    G. L. McDaniel, L. T. Long, L. T. Taylor, J. High Resolut. Chromatogr.21, 245 (1998).CrossRefGoogle Scholar
  12. [12]
    P. G. Thompson, L. D. Taylor, B. E. Richter, N. L. Porter, J. L. Ezzell, J. High Resolut Chromatogr.16, 713 (1993).CrossRefGoogle Scholar
  13. [13]
    P. G. Thompson, L. T. Taylor, J. High Resolut. Chromatogr.17, 759 (1994).CrossRefGoogle Scholar
  14. [14]
    J. J. Lagenfeld, M. D. Burford, S. B. Hawthorne, D. J. Miller, J. Chromatogr.594, 297 (1992).CrossRefGoogle Scholar
  15. [15]
    J. Vejrosta, P. Karasek, J. Planeta, Anal. Chem.71, 905 (1999).CrossRefGoogle Scholar
  16. [16]
    P. R. Eckard, L. T. Taylor, J. High Resolut. Chromatogr.19, 117 (1996).CrossRefGoogle Scholar
  17. [17]
    L. J. Mulcahey, J. L. Hedrick, L. T. Taylor, Anal. Chem.63, 2225 (1991).CrossRefGoogle Scholar
  18. [18]
    W. N. Moore, L. T. Taylor, Anal. Chem.67, 2030 (1995).CrossRefGoogle Scholar
  19. [19]
    X. Chaudot, A. Tambute, M. Caude, J. High Resolut. Chromatogr.21, 175 (1998).CrossRefGoogle Scholar
  20. [20]
    S. L. Taylor, J. W. King, S. E. Abel, Abstracts of the 5th International Symposium on Supercritical Fluid Chromatography and Extraction, Supercritical Conferences, Cincinnati, OH, 1994, D 16–17.Google Scholar
  21. [21]
    D. Van der Straeten, H. Van Langenhove, N. Schamp, J. Chromatogr.331, 207 (1985).CrossRefGoogle Scholar
  22. [22]
    P. Sandra, F. David, E. Baltusan, T. De Smaele, in A. J. Handley, Ed., Extraction Methods in Organic Analysis, Sheffield Academic Press, Sheffield, England 1999, pp. 244–247.Google Scholar
  23. [23]
    R. F. Gallant, J. W. King, P. L. Levins, J. F. Piecewicz, Characterization of Sorbent Resins for Use in Environmental Sampling, EPA Report No. 600/7-78-054 March, 1978.Google Scholar
  24. [24]
    J. J. Manura, The Mass Spec Source 7/94, Scientific Instrument Services, Ringoes, NJ, 1994, pp. 3–11.Google Scholar
  25. [25]
    R. F. Fedors, Poly. Eng. Sci.14, 147 (1974).CrossRefGoogle Scholar
  26. [26]
    J. W. King, S. L. Taylor, S. E. Abel, Submitted to Anal. Chem.Google Scholar
  27. [27]
    R. J. Laub, R. L. Pecsok, Physicochemical Applications of Gas Chromatography, Wiley-Interscience, New York, 1978, pp. 102–103.Google Scholar
  28. [28]
    J. W. King, in B. A. Charpentier and M. R. Sevenants, Eds., Supercritical Fluids—Chemical and Engineering Principles and Applications, American Chemical Society, Washington, DC, 1987, pp. 150–171.Google Scholar
  29. [29]
    J. Gmehling, J. Menke, M. Schiller, Activity Coefficients at Infinite Dilution, Dechema, Frankfurt, 1994.Google Scholar
  30. [30]
    C. Molllmann, J. Gmehling, J. Chem. Eng. Data5, 35 (1997).CrossRefGoogle Scholar
  31. [31]
    A. V. Kiselev, Y. I. Yashin, Gas Adsorption Chromatography, Plenum Press, New York, 1989.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2000

Authors and Affiliations

  • J. W. King
    • 1
  • Z. Zhang
    • 1
  1. 1.Food Quality & Safety Research National Center for Agricultural Utilization, Research Agricultural Research Service/USDA 1815 NUniversity StreetPeoriaUSA

Personalised recommendations