Advertisement

Chromatographia

, Volume 51, Issue 7–8, pp 417–427 | Cite as

Prediction of the chromatographic behaviour for a series of diuretic compounds

  • J. Barbosa
  • R. Bergés
  • V. Sanz-Nebot
Originals

Summary

The proportion of organic modifier and the pH of the acetonitrile-water mixtures used as mobile phases were optimized in order to separate a group of diuretic compounds covering a wide range of physyco-chemical properties. The Linear Solvation Energy Relationship (LSER) formalism based either on the multiparameter π*, β and α scales or the single solvent polarity parameterE T N , have been used to predict their chromatographic behaviour as a function of the percentage of acetonitrile in the eluent. Moreover, correlation established between retention and pH of the aqueous-organic mobile phases have been used to predict the chromatographic behaviour of the diuretic compounds studied as a function of the eluent pH. Linear correlation between a function of the eluent pH. Linear correlation between the chromatographic retention and theE T N polarity parameter of mobile phases containing different percentages of organic modifier has been obtained Based on the knowledge of the acid-base dissociation constant the relation between retention and mobile phase pH has also been linearized. These relationship allowed an important reduction of the experimental retention data needed for developing a given separation and a great improvement in chromatographic optimization schemes.

Key words

Column liquid chromatography Retentionvs mobile phase composition Retention prediction Diuretics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. W. Bridges, L. F. Chasseaud. Progress in Drug metabolism, Vol. 7. J. Wiley & Sons. New York, 1983, p. 58.Google Scholar
  2. [2]
    J. Flórez, J. A. Armijo. Fármacos diuréticos. J. Flórez, J. A. Armijo and A. Mediavilla, Eds., Farmacología Humana, Ediciones Científicas y Técnicas S. A., Barcelona (1992), p. 721.Google Scholar
  3. [3]
    R. Ventura, T. Nadal, P. Alcalde, J. A. Pascual, J. Segura, J. Chromatogr. A,655, 233 (1993).CrossRefGoogle Scholar
  4. [4]
    F. de Croo, W. van den Bosche, P. de Moerloose, J. Chromatogr.,325, 395 (1985).CrossRefGoogle Scholar
  5. [5]
    S. F. Cooper;R. Massé, R. Dugal, J. Chromatogr.,489, 65 (1989).Google Scholar
  6. [6]
    P. Campins-Falcó, R. Herráez-Hernández, A. Sevillano-Cabeza, J. Liq. Chromatogr.,14, 3575 (1991).Google Scholar
  7. [7]
    P. Campíns-Falcó, R. Herráez-Hernández, A. Sevillano-Cabeza, J. Chromatogr.,612, 245 (1993).Google Scholar
  8. [8]
    M. Saarinen, H. Sirén, M. L. Riekkola, J. Liq. Chromatogr.,16, 4063 (1963).Google Scholar
  9. [9]
    P. C. Sadek, P. W. Carr, R. M. Doherty, M. J. Kamlet, R. W. Taft, M. H. Abraham, Anal. Chem.,57, 2971 (1985).CrossRefGoogle Scholar
  10. [10]
    M. J. Kamlet, R. M. Doherty, J. M. Abbound, M. H. Abraham, R. W. Taft, J. Pharm. Sci.,75, 338 (1986).Google Scholar
  11. [11]
    W. J. Cheong, P. W. Carr, Anal. Chem.,61, 1524 (1989).CrossRefGoogle Scholar
  12. [12]
    M. J. Kamlet, P. W. Carr, R. W. Taft, M. H. Abraham, J. Am. Chem. Soc.,103, 6062 (1981).CrossRefGoogle Scholar
  13. [13]
    M. J. Kamlet, J. L. Abbound, R. W. Taft, J. Am. Chem. Soc.,99, 6027 (1977).CrossRefGoogle Scholar
  14. [14]
    R. W. Taft, M. J. Kamlet, J. Am. Chem. Soc.,98, 2886 (1976).CrossRefGoogle Scholar
  15. [15]
    M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc.,98, 377 (1976).CrossRefGoogle Scholar
  16. [16]
    D. Barrón, J. A. Pascual, J. Segura, J. Barbosa, Chromatographia,41, 573 (1995).CrossRefGoogle Scholar
  17. [17]
    J. Barbosa, R. Bergés, V. Sanz-Nebot, J. Chromatogr. A,719, 27 (1996).CrossRefGoogle Scholar
  18. [18]
    J. Barbosa, V. Sanz-Nebot, I. Toro, J. Chromatogr. A,725, 249 (1996).CrossRefGoogle Scholar
  19. [19]
    T. M. Krygowski, P. K. Wrona, U. Zielkowska, Tetrahedron,41, 4519 (1985).CrossRefGoogle Scholar
  20. [20]
    Y. Marcus, Y. Migron, J. Phys. Chem.,95, 400 (1991).CrossRefGoogle Scholar
  21. [21]
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH Verlagsgellschaft, Weinheim, 1988.Google Scholar
  22. [22]
    M. J. Kamlet, J. L. Abboud, R. W. Taft, Prog. Phys. Org. Chem.,13, 485 (1981).Google Scholar
  23. [23]
    B. P. Johnson, M. G. Khaledi, J. G. Dorsey, Anal. Chem.,58, 2354 (1986).CrossRefGoogle Scholar
  24. [24]
    M. M. Hsieh, J. G. Dorsey, J. Chromatogr.,631, 63 (1993). 2354 (1986).CrossRefGoogle Scholar
  25. [25]
    P. J. Schoenmakers, S. van Molle, C. M. G., Hayes, L. G. M. Uunk, Anal. Chim. Acta,250, 1 (1991).CrossRefGoogle Scholar
  26. [26]
    P. R. Mussini, T. Mussini, S. Rondinini, Pure Appl. Chem.,69, 1007 (1997).Google Scholar
  27. [27]
    F. G. K. Baucke, Anal. Chem.,66, 4519 (1994).CrossRefGoogle Scholar
  28. [28]
    C. Horváth, W. Melander, I. Molnár, Anal. Chem.,49, 142 (1977).CrossRefGoogle Scholar
  29. [29]
    W. R. Melander, C. Horváth, High Performance Liquid Chromatography Advances and Prespectives, C. Horváth, Ed., vol. 2, Academic Press, New York, 1980.Google Scholar
  30. [30]
    J. P. Foley, W. E., May, Anal. Chem.,59, 102 (1987).CrossRefGoogle Scholar
  31. [31]
    F. Szokoli, Zs. Németh, J. Inczédy, Chromatographia,29, 165 (1990).CrossRefGoogle Scholar
  32. [32]
    P. Chaminade, A. Baillet, D. Ferrier, B. Bourguignon, D. L. Massart, Anal. Chim. Acta,280, 93 (1993).CrossRefGoogle Scholar
  33. [33]
    J. E. Hardcastle, M. He, B. Begum, R. Vermillionsalsbury, J. Chromatogr. A,691, 225 (1995).CrossRefGoogle Scholar
  34. [34]
    J. Barbosa, R. Bergés, V. Sanz-Nebot, J. Chromatogr. A,823, 411 (1998).CrossRefGoogle Scholar
  35. [35]
    J. Barbosa, I. Toro, V. Sanz-Nebot, J. Chromatogr. A,823, 497 (1998).CrossRefGoogle Scholar
  36. [36]
    C. F. Poole, S. K. Poole, Chromatography Today, Ed. Elsevier, Amsterdam, 1991.Google Scholar
  37. [37]
    H. Kovacs, A. Ladksomen, J. Am. Chem. Soc.,113, 5596 (1991).CrossRefGoogle Scholar
  38. [38]
    J. Barbosa, V. Sanz-Nebot, J. Chem. Soc. Faraday Trans.,90, 3287 (1994).CrossRefGoogle Scholar
  39. [39]
    Y. Marcus, J. Chem. Soc. Perkin Trans. 2, 1751 (1994).Google Scholar
  40. [40]
    J. H. Park, A. J. Dallas, P. Chau, P. W. Carr, J. Chromatogr. A,677, 1 (1994).CrossRefGoogle Scholar
  41. [41]
    J. Barbosa, D. Barrón, R. Bergés, S. Butí, V. Sanz-Nebot, Int. J. Pharm.,160, 173 (1998).CrossRefGoogle Scholar
  42. [42]
    A. C. Moffat, J. V. Jackson, M. S. Moss, Clarke’s isolation and identification of drugs in pharmaceuticals, body fluids and post-mortem material,; B. Widdop, Ed., 2nd ed., The Pharmaceutical Press, London, 1986.Google Scholar
  43. [43]
    U. G. G. Hennig, R. E. Moskalyk, L. G. Chatten, D. L. Rabenstein, Analyst,106, 565 (1981).CrossRefGoogle Scholar
  44. [44]
    A. Lant, Drugs,29, 162 (1985).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2000

Authors and Affiliations

  • J. Barbosa
    • 1
  • R. Bergés
    • 1
  • V. Sanz-Nebot
    • 1
  1. 1.Departament de Química AnalíticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations