Advertisement

Chromatographia

, Volume 51, Issue 7–8, pp 404–410 | Cite as

Optimization of experimental variables in the dabsyl chloride derivatization of biogenic amines for their determination by RP-HPLC

  • R. Romero
  • M. G. Bagur
  • M. Sánchez-Viñas
  • D. Gázquez
Originals

Summary

In the last few years special attention has been paid to the pre-column derivatization of biogenic amines with dabsyl chloride because proper experimental conditions for this reaction are very important. In this study, an experimental design (Doehlert design) was used to optimize the variables involved in the dabsylation of the following amines: histamine, tyramine, phenylethylamine, tryptamine, cadaverine, putrescine, spermidine, and spermine. The optimum experimental conditions for forming the dabsyl derivatives are: reagent concentration, 1.75.10−3 M; pH, 8.2; temperature, 70°C; heating time (t h ), 21 min. Under these conditions good chromatographic repeatability is obtained.

Key Words

Column liquid chromatography Biogenic amines Dabsylation reaction Optimization of the reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. H. Silla Santos, International Food Microbiology29, 213 (1996).CrossRefGoogle Scholar
  2. [2]
    S. Eeerola, R. Hinkkanen, E. Lindfords, T. Hirvi, J. AOAC International76, 575 (1993).Google Scholar
  3. [3]
    A. R. Shalaby, Food Chemistry49, 305 (1994).CrossRefGoogle Scholar
  4. [4]
    P. Malle, M. Vallé, S. Bouquelet, J. AOAC International79, 49 (1996).Google Scholar
  5. [5]
    D. Hornero-Méndez, A. Garrido-Fernández, Analyst119, 2037 (1994).CrossRefGoogle Scholar
  6. [6]
    R. Miajala, E. Nurmi, A. Fischer, Meat Science39, 9 (1995).CrossRefGoogle Scholar
  7. [7]
    B. W. Straub, M. Kicherer, S. M. Schilcher, W. P. Hammes, Z. Lebensm. Unters. Forsch.201, 79 (1995).CrossRefGoogle Scholar
  8. [8]
    M. L. Izquierdo-Pulido, M. C. Vidal-Carou, A. Marine-Font, J. AOAC International76, 1027 (1993).Google Scholar
  9. [9]
    J. E. Stratton, R. W. Hutkins, S. L. Taylor, J. Food Protection54, 460 (1991).Google Scholar
  10. [10]
    S. Moret, L. S. Conte, J. Chromatogr. A,729, 363 (1996).CrossRefGoogle Scholar
  11. [11]
    O. Busto, J. Guasch, P. Borrull, J. Chromathogr. A718, 309 (1995).CrossRefGoogle Scholar
  12. [12]
    V. Frattini, C. Lionetti, J. Chromatogr. A809, 241 (1998).CrossRefGoogle Scholar
  13. [13]
    A. Bockhardt, I. Krause, H. Klostermeyer, Z. Lebens. Unterts. Forsch.203, 65 (1996).CrossRefGoogle Scholar
  14. [14]
    G. E. P. Box, W. G. M. Hunter, J. S. Hunter, “Statistics for Experimenters. An Introduction to Design, Data Analysis and Model Building”, Reverté, Barcelona, Spain, 1989, p. 525.Google Scholar
  15. [15]
    J. M. Bosque Sendra, M. Mechar, L. Cuadros Rodríguez, M. F. Molina Molina, Anal. Proc.32, 375 (1995).Google Scholar
  16. [16]
    M. Mechar, M. F. Molina Molina, L. Cuadros Rodríguez, J. M. Bosque Sendra, Anal. Chim. Acta316, 185 (1995).CrossRefGoogle Scholar
  17. [17]
    D. H. Doehlert, Appl. Stat.19, 231 (1970).CrossRefGoogle Scholar
  18. [18]
    Statgraphics 6.0, Statistical Graphics Co., (1993)Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2000

Authors and Affiliations

  • R. Romero
    • 1
  • M. G. Bagur
    • 1
  • M. Sánchez-Viñas
    • 1
  • D. Gázquez
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations