, Volume 51, Issue 7–8, pp 390–396 | Cite as

Simultaneous separation of nonionic surfactants and polyethylene glycols by reversed phase high performance liquid chromatography

  • T. Kamiusuki
  • T. Monde
  • K. Omae
  • K. Morioka
  • T. Konakahara


The simultaneous separation of polyethylene glycol and its derivatives such as the lauryl alcohol and lauric acid ethoxylate oligomers was carried out by reversed phase high performance liquid chromatography. Branched fluorinated silica gel columns combined with evaporative light scattering detection were used for the characterization of nonionic surfactants. Lauryl alcohol ethoxylate oligomers were separated at 10°C with an isocratic eluent according to ethoxylate number and the retention time of the oligomers decreases with increasing ethoxylate number. The Van’t Hoff plots of retention factor of lauryl alcohol ethoxylate gave a complex cure, which is anomalous behavior for reversed phase high performance liquid chromatography. The anomalous Van’t Hoff plots were explained by a partial conformational change from polar to less polar conformers with increasing temperature. The most significant features for the analysis of the lauryl alcohol ethoxylate were the use of acetonitrile as mobile phase and operating temperature. The polyethylene glycol was separated according to ethoxylate number and the retention time of oligomers increased with increasing ethoxylate number. The Van’t Hoff plots of retention factor of polyethylene glycol had negative slopes. It was presumed that the polar conformation of the ethylene oxide chain decreased with increasing temperature. The lauryl alcohol ethoxylate and polyethylene glycol were separated simultaneously in gradient elution as a result of the conformational change of the ethylene oxide chain. As a practical example, lauric acid ethoxylate simultaneously separated into free polyethylene glycol, ethoxylate monolaurate and ethoxylate dilaurate in gradient elution.

Key Words

Column liquid chromatography Nonionic surfactant Polyethylene glycol Fluorocarbon bonded stationary phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. R. Enyeart, in M. J. Schick, Ed., Nonionic Surfactants, Marcel Dekker, New York, 1979, p. 44.Google Scholar
  2. [2]
    H. Schuette, M. Wittwer, U. S. Patent 2174760, (1939) to I. G. Farbenindustrie Aktiengesellschaft.Google Scholar
  3. [3]
    H. Bennett, U. S. Patent 2275494, (1939).Google Scholar
  4. [4]
    H. B. Goldstein, A. S. Waldman, U. S. Patent 2528136, (1950) to Sum Chemical Corporation.Google Scholar
  5. [5]
    N. Garti, V. R. Kaufman, A. Aserin, in J. Cross, Ed., Nonionic Surfactants: Chemical Analysis, Macel Dekker, New York, 1987, p. 225.Google Scholar
  6. [6]
    R. E. A. Escott, S. J. Brinkworth, T. A. Steedman, J. Chromatogr. A,282, 655 (1983).CrossRefGoogle Scholar
  7. [7]
    K. Fytianos, S. Pegiadou, N. Raikos, I. Eleftheriadis, H. Tsoukali, Chemosphere,35, 1423 (1997).CrossRefGoogle Scholar
  8. [8]
    N. Martin, J. Liquid Chromatogr.,18, 1173 (1995).Google Scholar
  9. [9]
    M. Ahel, W. Giger, Anal. Chem.,57, 2584 (1985).CrossRefGoogle Scholar
  10. [10]
    I. Zeman, J. Chromatogr.,363, 223 (1986).CrossRefGoogle Scholar
  11. [11]
    M. J. Scarlett, J. A. Fisher, H. Zhang, M. Ronan, Wat. Res.,28, 2109 (1994).CrossRefGoogle Scholar
  12. [12]
    M. C. Allen, D. E. Linder, J. Am. Oil Chem. Soc.,58, 950 (1981).Google Scholar
  13. [13]
    A. Marcomini, S. Capriand, W. Giger, J. Chromatogr.,403, 243 (1987).CrossRefGoogle Scholar
  14. [14]
    S. Brossard, M. Lafosse, M. Dreux, J. Chromatogr. A,591, 149 (1992).CrossRefGoogle Scholar
  15. [15]
    K. Lemr, J. Chromatogr. A,732, 299 (1996).CrossRefGoogle Scholar
  16. [16]
    Z. Wang, M. Fingas, J. Chromatogr.,673, 145 (1993).CrossRefGoogle Scholar
  17. [17]
    F. Guerrero, J. L. Rocca, Cimica Oggi,13, 11 (1995).Google Scholar
  18. [18]
    P. L. Desbene, B. Desmazieres, J. J. Basselier, A. Desbene-Monvernay, J. Chromatogr.,461, 305 (1989).CrossRefGoogle Scholar
  19. [19]
    B. Trathnigg, M. Kollroser, A. Gorbunov, A. Skvortsov, J. Chromatogr. A,761, 21 (1997).CrossRefGoogle Scholar
  20. [20]
    R. E. A. Escott, N. Mortimer, J. Chromatogr.,553, 423 (1991).CrossRefGoogle Scholar
  21. [21]
    T. Kamiusuki, T. Monde, F. Nemoto, T. Konakahara, Y. Takahashi, J. Chromatogr. A,852, 475 (1999)CrossRefGoogle Scholar
  22. [22]
    N. Martin, J. Liquid Chromatogr.,18, 1173 (1995).Google Scholar
  23. [23]
    K. Konakahara, S. Okada, T. Monde, N. Nakayama, J. Furuhashi, J. Sugaya, Nihon Kagaku Kaishi,1991, 1638 (1991);T. Monde, T. Kamiusuki, T. Kuroda, K. Mikumo, T. Ohkawa, H. Fukube. J. Chromatogr. A,722, 273 (1996);T. Monde, N. Nakayama, K. Yano, T. Yoko, T. Konakahara, J. Colloid Interface Sci.,185, 111 (1997).Google Scholar
  24. [24]
    B. L. Karger, J. R. Gant, A. Hartkopf, P. H. Weiner, J. Chromatogr.,128, 65 (1976).CrossRefGoogle Scholar
  25. [25]
    J. J. Pesek, M. T. Matyska, H. Hemphälä, Chromatographia,43, 10 (1996).CrossRefGoogle Scholar
  26. [26]
    H. Colin, J. C. Diez-Masa, G. Guiochon, T. Czajkowska, I. Miedziak, J. Chromatogr.,167, 41 (1978).CrossRefGoogle Scholar
  27. [27]
    W. Melander, D. E. Campbell, C. Horváth, J. Chromatogr.,158, 215 (1978).Google Scholar
  28. [28]
    T. Tasaki, J. Am. Chem. Soc.,118, 8459 (1996).CrossRefGoogle Scholar
  29. [29]
    R. Begun, T. Sagawa, S. Masatoki, H. Matsuura, J. Mol. Struct.,442, 243 (1998).CrossRefGoogle Scholar
  30. [30]
    G. Karlström, J. Phys. Chem.,89, 4962 (1985).CrossRefGoogle Scholar
  31. [31]
    R. Begum, H. Matsuura, J. Chem. Soc., Faraday Trans.,93, 3839 (1997).CrossRefGoogle Scholar
  32. [32]
    W. R. Melander, A. Nahum, C. Horváth, J. Chromatogr.,185, 129 (1979).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2000

Authors and Affiliations

  • T. Kamiusuki
    • 1
  • T. Monde
    • 1
  • K. Omae
    • 1
  • K. Morioka
    • 1
  • T. Konakahara
    • 2
  1. 1.Central Research LaboratoryNEOS Company LimitedKohsei, Kohka, ShigaJapan
  2. 2.Department of Industrial and Engineering Chemistry, Faculty of Science and TechnologyScience University of TokyoNoda, ChibaJapan

Personalised recommendations