, Volume 53, Issue 5–6, pp 315–320 | Cite as

Time separation of adsorption sites on heterogeneous surfaces by inverse gas chromatography

  • F. Roubani-Kalantzopoulou
  • Th. Artemiadi
  • I. Bassiotis
  • N. A. Katsanos
  • V. Plagianakos
Originals Gas Chromatography


The measurement of local (homogeneous) adsorption energiesε i , local monolayer capacities,c max * , local adsorption isotherms,θ i (p, T, ε), and probability density functions for adsorption, f(ε) and ϕ(ε,t), can be used to study the mechanism of adsorption of five gaseous hydrocarbons on the heterogeneous surface of magnesium oxide.

The method does not use analytical or numerical solutions of a classical integral equation comprisingf(ε) as unknown, but it depends on a time function of gas chromatographic peaks obtained by short flow-reversals of the carrier gas.

The results for adsorption of ethane, ethylene, acetylene, propene, and l-butene on MgO, in the absence and presence of O3 are given and discussed on the basis of a mechanism proposed earlier for argon on titatium dioxide.

Key Words

Gas chromatography Inverse gas chromatography Adsorption sites Heterogeneous surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Paryjczak, T. “Gas Chromatography in Adsorption and Catalysis”. Ellis Horwood, Chichester,1986.Google Scholar
  2. [2]
    Jaroniec, M.; Madey, R. “Physical Adsorption on Heterogeneous Solids”, Elsevier, Amsterdam,1988.Google Scholar
  3. [3]
    Rudzinski, W.; Everett, D.H. “Adsorption of Gases on Heterogeneous Surfaces”, Academic Press, New York,1992.Google Scholar
  4. [4]
    Katsanos, N.A.; Thede, R.; Roubani-Kalantzopoulou, F.J. Chromatogr. A 1998;795, 133.CrossRefGoogle Scholar
  5. [5]
    Roles, J.; Guiochon, G.J. Chromatogr. 1992,5, 233.CrossRefGoogle Scholar
  6. [6]
    Stanley, B.; Guiochon, G.J. Phys. Chem. 1993,97, 8098.CrossRefGoogle Scholar
  7. [7]
    Golshan-Shirazi, S.; Guiochon, G.J. Chromatogr. 1994,670, 1.CrossRefGoogle Scholar
  8. [8]
    Stanley, B.J.; Guiochon, G.Langmuir 1994,10, 4278; ibid.1995,11, 1735.CrossRefGoogle Scholar
  9. [9]
    Quinones, I.; Guiochon, G.J. Colloid Interf. Sci.183, 57 (1996).CrossRefGoogle Scholar
  10. [10]
    Heuchel, M.; Jaroniec, M.; Gilpin, R.K.J. Chromatogr. 1993,628, 59.CrossRefGoogle Scholar
  11. [11]
    Katsanos, N.A.; Roubani-Kalantzopoulou, F.Adv. Chromatogr. 2000,40, 231.Google Scholar
  12. [12]
    Katsanos, N.A.; Arvanitopoulou, E.; Roubani-Kalantzopoulou, F.; Kalantzopoulos, A.J. Phys. Chem. B 1999,103, 1152.CrossRefGoogle Scholar
  13. [13]
    Katsanos, N.A.; Rakintzis, N.; Roubani-Kalantzopoulou, F.; Arvanitopoulou, E.; Kalantzopoulos, B.J. Chromatogr. A 1999,845, 103.CrossRefGoogle Scholar
  14. [14]
    Katsanos, N.A.; Iliopoulou, E.; Robani-Kalantzopoulos, F.; Kalogirou, E.J. Phys. Chem. B 1999,103, 10228.CrossRefGoogle Scholar
  15. [15]
    Katsanos, N.A.; Iliopoulou, E.; Plagianakos, V.; Mangou, H.J. Colloid Interf. Sci., in press.Google Scholar
  16. [16]
    Katsanos, N.A.; Dalas, E.J. Phys. Chem. 1987,91, 3103.CrossRefGoogle Scholar
  17. [17]
    Fowler, R.H. “Statistical Mechanics”. 2nd ed., Cambridge University Press, Cambridge,1936, p. 829.Google Scholar
  18. [18]
    Abatzoglou, Ch.; Katsanos, N.A.; Kalantzopoulos, A.; Roubani-Katantzopoulou, F.Stud. Surf. Sci. Catal. 1999,122, 175.CrossRefGoogle Scholar
  19. [19]
    Bakaev, V.A.; Steele, W.A.Langmuir 1992,8, 1372.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 2001

Authors and Affiliations

  • F. Roubani-Kalantzopoulou
    • 1
  • Th. Artemiadi
    • 1
  • I. Bassiotis
    • 1
  • N. A. Katsanos
    • 2
  • V. Plagianakos
    • 2
  1. 1.Department of Chemical EngineeringNational Technical UniversityZografouGreece
  2. 2.Physical Chemistry LaboratoryUniversity of PatrasPatrasGreece

Personalised recommendations