Skip to main content

Advertisement

Log in

Histochemical study of alveolar bone remodeling in op/op mice by the administration of macrophage-colony stimulating factor

  • Original Articles
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

We performed histochemical and statistical studies to clarify the mechanism of the coupling phenomenon after administering recombinant human macrophage-colony stimulating factor (rhM-CSF) to 2-week-old osteopetrotic mice (op/op). A single injection of rhM-CSF induced tartrate-resistant acid phosphatase-(TRAP-) positive cells and cement lines from day 3 after administration, and the marrow cavities became larger. The number of TRAP-positive cells was the greatest at day 3, and the length of the TRAP-positive cement lines peaked at day 5. The TRAP-positive cells and cement lines then gradually decreased. Round osteoblasts, actively forming bone matrices, were seen on the cement lines and the bone surfaces. In control mice injected with physiological saline, alveolar bone had an osteopetrotic appearance. TRAP-positive cells were rarely seen in alveolar bone, although a few TRAP-positive cells and cement lines were seen from day 5 to day 14. Most osteoblasts on the bone surfaces were flattened. These results suggest that administration of rhM-CSF promotes an active coupling phenomenon after inducing the differentiation and the activation of osteoclasts. The op/op mouse is a good model for investigating the coupling phenomenon as well as the differentiation of osteoclasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson ER, Baylink JD, Wergedal JE (1975) Increases in number and size of osteoclasts in response to calcium or phosphorus deficiency in the rat. Endocrinology 97:283–289

    PubMed  CAS  Google Scholar 

  2. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78:3204–3208

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura H, Ozawa H (1992) Characteristic localization of carbohydrates in osteoclasts by lection cytochemistry. Bone (N Y) 13:411–416

    CAS  Google Scholar 

  4. Oguro I, Ozawa H (1988) The histochemical localization of acid phosphatase activity in BMU. J Bone Miner Metab 6:190–195

    Article  Google Scholar 

  5. van Tran P, Vignery A, Baron R (1982) An electron microscopic study of the bone-remodeling sequence in the rat. Cell Tissue Res 225:283–292

    Article  Google Scholar 

  6. Kurihara N, Suda T, Miura Y, Nakauchi H, Kodama H, Hiura K, Hakeda Y, Kumegawa M (1989) Generation of osteoclasts from isolated hematopoietic progenitor cells. Blood 74:1295–1302

    PubMed  CAS  Google Scholar 

  7. Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183:1–44

    Article  PubMed  Google Scholar 

  8. Nijweide PJ, Burger EH, Feyen JH (1986) Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol Rev 66:855–886

    PubMed  CAS  Google Scholar 

  9. Scheven BAA, Visser JWM, Nijweide PJ (1986) In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature 321:79–81

    PubMed  CAS  Google Scholar 

  10. Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2595

    PubMed  CAS  Google Scholar 

  11. Felix R, Cecchini MG, Hofstetter W, Elford PR, Stutzer A, Fleisch H (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophage in the osteopetrotic op/op mouse. J Bone Miner Res 5:781–789

    PubMed  CAS  Google Scholar 

  12. Kodama H, Yamasaki A, Nose M, Nidda S, Ohgame Y, Abe M, Kumegawa M, Suda T (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272

    Article  PubMed  CAS  Google Scholar 

  13. Kodama H, Yamasaki A, Abe M, Niida S, Hakeda Y, Kawashima H (1993) Transient recruitment of osteoclasts and expression of their function in osteopetrotic (op/op) mice by a single injection of macrophage colony-stimulating factor. J Bone Miner Res 8:45–50

    PubMed  CAS  Google Scholar 

  14. Marks SC Jr (1982) Morphological evidence of reduced bone resorption in osteopetrotic (op) mice. Am J Anat 163:157–167

    Article  PubMed  Google Scholar 

  15. Marks SC Jr, Lane PW (1976) Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered 67:11–18

    PubMed  Google Scholar 

  16. Naito M, Hayashi S-I, Yoshida H, Nishikawa S-I, Shultz LD, Takahashi K (1991) Abnormal differentiation of tissue macrophage population in “osteopetrosis” (op) mice defective in the production of macrophage colony-stimulating factor. Am J Pathol 193:657–667

    Google Scholar 

  17. Takahashi K, Naito M, Shultz LD, Hayashi S-I, Nishikawa S-I (1993) Differentiation of dendritic cell populations in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation. J Leukocyte Biol 53:19–28

    PubMed  CAS  Google Scholar 

  18. Wiktor-Jedrzejczak W, Ahmed A, Szczylik C, Skelly RR (1982) Hematological characterization of congenital osteopetrosis in op/op mouse. J Exp Med 156:1516–1527

    Article  PubMed  CAS  Google Scholar 

  19. Wiktor-Jedrejczak W, Ratajczak MZ, Ptasznik A, Sell KW, Ahmed-Ansari A, Ostertag W (1992) CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stage. Exp Hematol (N Y) 20:1004–1010

    Google Scholar 

  20. Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okumura H, Sudo T, Shultz LD, Nishikawa SI (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  PubMed  CAS  Google Scholar 

  21. Niida S, Amizuka N, Hara F, Ozawa H, Kodama H (1994) Expression of mac-2 antigen in the preosteoclast and osteoclast identified in the op/op mouse injected with macrophage colonystimulating factor. J Bone Miner Res 9:873–881

    Article  PubMed  CAS  Google Scholar 

  22. Miyayama H, Solomon R, Sasaki M, Lin C-W, Fishman WH (1975) Demonstration of lysosomal and extralysosomal sites for acid phosphatase in mouse kidney tubule cells withp-nitrophenylphosphate lead-salt technique. J Histochem Cytochem 23:439–451

    PubMed  CAS  Google Scholar 

  23. Popoff SN, Marks SC Jr (1995) The heterogeneity of the osteopetrosis reflects the diversity of cellular influences during skeletal development. Bone (N Y) 17:437–445

    CAS  Google Scholar 

  24. Hattersley G, Owens J, Flanagen AM, Chambers TJ (1991) Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro. Biochem Biophys Res Commun 177:526–531

    Article  PubMed  CAS  Google Scholar 

  25. Kodama H, Nose M, Niida S, Yamasaki A (1991) Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J Exp Med 173:1291–1294

    Article  PubMed  CAS  Google Scholar 

  26. Marks SC Jr (1989) Osteoclast biology: lesson from mammalian mutations. Am J Med Genet 34:43–54

    Article  PubMed  Google Scholar 

  27. Takahashi N, Udagawa N, Akatsu T, Tanaka H, Isogai Y, Suda T (1991) Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by oteoblastic cells. Endocrinology 128:1792–1796

    PubMed  CAS  Google Scholar 

  28. Wiktor-Jedrzejczak W, Urbanouska E, Aukerman SL, Pollard JW, Stanley ER, Ralph P, Ansari AA, Sell KW, Szperl M (1991) Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental and humoral requirements for this growth factor. Exp Hematol (N Y) 19:1049–1054

    CAS  Google Scholar 

  29. Wiktor-Jedrzejiczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832

    Article  Google Scholar 

  30. Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602

    Article  PubMed  CAS  Google Scholar 

  31. Takaishi T, Matsui T, Tsukamoto T, Ito M, Taniguchi T, Fukase M, Chihara K (1994) TGF-β induced macrophage colonystimulating factor gene expression in various mesenchymal cell lines. Am J Physiol 267:C25-C31

    PubMed  CAS  Google Scholar 

  32. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H, Martin TJ, Suda T (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125:1805–1813

    PubMed  CAS  Google Scholar 

  33. Baron R, Vignery A, Tran Van P (1980) The significance of lacunar erosion without osteoclasts: studies on the reversal phase of the remodeling sequence. Metab Bone Dis Relat Res 2:35–40

    Google Scholar 

  34. Heersche JNM (1978) Mechanism of osteoclastic bone resorption: a new hypothesis. Calcif Tissue Res 26:81–84

    Article  PubMed  CAS  Google Scholar 

  35. Rifkin BR, Heijil L (1979) The occurrence of mononuclear cells at sites of osteoclastic bone resorption in experimental periodontities. J Periodontol 50:636–640

    PubMed  CAS  Google Scholar 

  36. Huffer WE (1988) Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Lab Invest 59:418–442

    PubMed  CAS  Google Scholar 

  37. Oguro I, Ozawa H (1988) The histochemical localization of acid phosphatase activity in BMU. J Bone Miner Metab 6:190–195

    Article  Google Scholar 

  38. Pfeilschifter J, Mundy GR (1987) Modulation of transforming growth factor beta activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci USA 84:2024–2028

    Article  PubMed  CAS  Google Scholar 

  39. Takaoka K, Yoshikawa H, Shimizu N, Ono K, Amitani K, Nakata Y, Sakamoto Y (1981) Purification of a bone-inducing substance (osteogenic factor) from a murine osteosarcoma. Biomed Res 2:466–471

    CAS  Google Scholar 

  40. Yoshikawa H, Takaoka K, Shimizu N, Ono K (1986) Acid solutions enhance bone-inducing activity of a murine osteosarcoma. Bone (N Y) 7:125–128

    CAS  Google Scholar 

  41. Yoshikawa H, Hashimoto J, Masuhara K, Takaoka K (1988) A possible role of bone morphogenetic protein (BMP) in the regulation of bone remodeling. Calcif Tissue Int 42 (suppl): A38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rakiba, S., Nakamura, H., Irie, K. et al. Histochemical study of alveolar bone remodeling in op/op mice by the administration of macrophage-colony stimulating factor. J Bone Miner Metab 15, 59–66 (1997). https://doi.org/10.1007/BF02490075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02490075

Key words

Navigation