Skip to main content
Log in

A newly developed removable dental device for fused 3-D MRI/MEG Imaging

  • Technical Report
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is ±3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviosly such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g. taste, pain, clenching) in maxillofacial region using MRI and MEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lobbezoo, F., Soucy, J.P. and Montplaisir, J.Y.: Striatal D2 receptor binding in sleep bruxism: A controlled study with iodine-123-iodobenzamide and single-photon-emission computed tomography.J. Dent. Res. 75: 1804–1810, 1996.

    Article  PubMed  Google Scholar 

  2. Laudahn, R., Kohlhoff, H. and Bromm, B.: Magnetoencephalography in the investigation of cortical pain processing.Pain and the Brain: from Nociception to Cognition, pp. 267–282, 1995. “Editors, B. Bromm, J.E. Desmedt, Advanced in Pain Research and Therapy Vol. 22.” Raven Press, Ltd., New York.

    Google Scholar 

  3. Barth, D.S., Sutherling, W.W., Engel, J. and Beatty, J.: Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain.Science 223: 293–296, 1984.

    PubMed  Google Scholar 

  4. Sutherling, W.W., Crandall, P.H., Cahan, L.D. and Barth, D.S.: The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy.Neurol. 38: 778–786, 1988.

    Google Scholar 

  5. Barth, D.S., Sutherling, W.W., Broffman, J. and Beatty, J.: Magnetic localization of a dipolar current source implanted in a sphere and human cranium.Electroencephalogr. Clin. Neurophysiol. 63: 260–273, 1986.

    Article  PubMed  Google Scholar 

  6. Yamamoto, T., Williamson, S.J., Kaufman, L., Nicholson, C. and Llinas, R.: Magnetic localisation of neuronal activity in the human brain.Proc. Nat. Acad. Sci. USA 85: 8723–8736, 1988.

    Article  Google Scholar 

  7. Ribary, U., Ioannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P.R., Lado, F., Mogilner, A. and Llinas, R.: Magnetic field tomography (MFT) of coherent thalamo-cortical 40 Hz oscillations in humans.Proc. Natl. Acad. Sci. USA 88: 11037–11041, 1991.

    Article  PubMed  Google Scholar 

  8. Swerdloff, S.J., Ruegsegger, M. and Wakai, R.T.: Spatiotemporal visualization of neuromagnetic data.Electorenceph. clin. Neurophysiol. 86: 51–57, 1993.

    Article  Google Scholar 

  9. Gallen, C.C., Schwartz, B., Rieke, K., Pantev, C., Sobel, D., Hrschkoff, E.C. and Bloom, F.E.: Intrasubject reliability and validity of somatosensory source localization using a large array biomagnetometer.Electroenceph. clin. Neurophysiol. 90: 145–156, 1994.

    Article  PubMed  Google Scholar 

  10. Towle, V.L., Bolanos, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D.N., Cakmur, R., Frank, S.A. and Spire, J.P.: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy.Electroenceph. clin. Neurophysiol. 86: 1–6, 1993.

    Article  PubMed  Google Scholar 

  11. Rogers, R.L., Baumann, S.B., Papanicolaou, A.C., Bourbon, T.W., Alagarsamy, S. and Eisenberg, H.M.: Localization of the P3 sources using magnetoencephalography and magnetic resonance imaging.Electroenceph. clin. Neurophysiol. 79: 308–321, 1991.

    Article  PubMed  Google Scholar 

  12. Gill, S.S. and Thomas, D.G.T.: A relocatable frame. Proceedings of the meeting of the Society of British Neurological Surgeons in.J. Neurol. Neurosurg. Psych. 52: 1460–1461, 1989.

    Google Scholar 

  13. Gill, S.S. Thomas, D.G.T., Warrington, A.P. and Brada, M.: Relocatable frame for stereotactic external beam radiotherapy.Int. J. Radiation Oncology Biol. Phys. 20: 599–603, 1991.

    Google Scholar 

  14. Graham, J.D., Warrington, A.P., Gill, S.S. and Brada, M.: A non-invasive, relocatable stereotactic frame for fractionated radiotherapy and multiple imaging.Radiotherapy and Oncology 21: 60–62, 1991.

    Article  PubMed  Google Scholar 

  15. Thomas, D.G.T., Gill, S.S., Wilson, C.B. Darling, J.L. and Parkins, C.S.: Use of relocatable stereotactic frame to integrate positron emission tomography and computed tomography images: Application in human malignant brain tumors.Stereotact. Funct. Neurosurg. 54+55: 388–392, 1990.

    PubMed  Google Scholar 

  16. Sofat, A., Hughes, S., Briggs, J., Beaney, R.P. and Thomas, D.G.T.: Stereotactic brachytherapy for malignant glioma using a relocatable flame.Brit. J. Neurosurg. 6: 543–548, 1992.

    Google Scholar 

  17. Akhtari, M., McNay, D., Mandelkern, M., Teeter, B., Cline, H.E., Mallick, J., Clark, G.T., Tatar, R., Lufkin, R., Chan, K., Rogers, R.L. and Sutherling, W.W.: Somatosensory evoked surface as the spatial constraint.Brain Topography 7: 63–69, 1994.

    Article  PubMed  Google Scholar 

  18. Singh, K.D., Holliday, I.E., Furlong, P.L. and Harding, G.F.A.: Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation.Electroenceph. clin. Neurophysiol. 102: 81–85, 1997.

    Article  PubMed  Google Scholar 

  19. Mosher, J.C., Spencer, M.E., Leahy, R.M., and Lewis, P.S.: Error bounds for EEG and MEG dipole source localization.Electroenceph. clin. Neurophysiol. 86: 303–321, 1993.

    Article  PubMed  Google Scholar 

  20. Novak, E.: Error bounds for Monte Carlo methods.Deterministic and Stochastic Error Bounds in Numerical Analysis. pp. 43–52, 1988. “Editors, A. Dold, B. Eckmann.” Lecture Notes in Mathematics 1349, Springer-Verlag Co., Berlin.

    Google Scholar 

  21. Sofat, A., Kratimenos, G. and Thomas, D.G.T.: Early experience with the Gill Thomas Locator for computed tomography-directed stereotactic biopsy of intracranial lesions.Neurosurg. 31: 972–974, 1992.

    Google Scholar 

  22. Kratimenos, G.P., Thomas, D.G.T., Shorvon, S.D. and Fish, D.R.: Stereotactic insertion of intracerebral electrodes in the investigation of epilepsy.Brit. J. Neurosurg. 7: 45–52, 1993.

    Google Scholar 

  23. Gallen, C.C., Sobel, D.F., Waltz, T., Aung, M., Copeland, B., Schwartz, G.J., Hirschkoff, E.C. and Bloom, F.R.: Noninvasive presurgical neuromagnetic mapping of somatosensory cortex.Neurosurg. 33: 260–268, 1993.

    Google Scholar 

  24. Buchner, H., Adams, L., Knepper, A., Ruger, R., Lanorde, G., Gilsbach, J.M., Ludwig, I., Reul, J. and Scherg, M.: Preoperative localization of the central sulcus by dipole source analysis of early somatosensory-evoked potentials and 3-dimensional magnetic-resonance-imaging.Neurosurg. 80: 849–856, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuboki, T., Clark, G.T., Akhtari, M. et al. A newly developed removable dental device for fused 3-D MRI/MEG Imaging. Oral Radiol. 15, 43–52 (1999). https://doi.org/10.1007/BF02489756

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02489756

Key Words

Navigation