Acta Mechanica Sinica

, Volume 8, Issue 3, pp 279–288 | Cite as

Nonlinear time transformation method for strong nonlinear oscillation systems



In this paper, a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems. This method can be used to study the limit cycle behavior of the autonomous systems and to analyze the forced vibration of a strong nonlinear system.

Key Words

strong nonlinear oscillation nonlinear time transformation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ottoy JP. An extension of the Van der P ol oscillator. Int J Control, 1980, 31(4): 691–703MATHMathSciNetGoogle Scholar
  2. 2.
    Yuste SB, Bejarano JD. Construction of approximate analytical solutions to a new class of non-linear oscillator equations. J Sound Vib, 1986, 110(2): 347–350Google Scholar
  3. 3.
    Burton TD. Non-linear oscillator limit cycle analysis using a time transformation approach. Int J Non-linear Mech, 1982, 17(1): 7–19MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Xu Zhao. A new asymptotic method in nonlinear mechanics. Acta Mechanica Sinica, 1985, 17(3): 266–271 (in Chinese)Google Scholar
  5. 5.
    Xu Zhao, Zhang Lingqi, Asymptotic method for analysis of non-linear systems with two parameters. Acta Mathematica Scientia, 1986, 6(4): 453–462MathSciNetGoogle Scholar
  6. 6.
    Mickens RE, Perturbation procedure for the Van der Pol oscillator based on the Hopf bifurcation theorem. J Sound Vib, 1988, 127(1): 187–191MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nayfeh AH. Perturbation methods. 1nd ed. New York: Wiley, 1973MATHGoogle Scholar
  8. 8.
    Nayfeh AH, Mook DT, Non-linear Oscillations. 1nd ed. New York: Wiley, 1979Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1992

Authors and Affiliations

  • Xu Zhao
    • 1
  1. 1.Dept. of MechanicsZhongshan UniversityGuangzhouChina

Personalised recommendations