Advertisement

Acta Mechanica Sinica

, Volume 8, Issue 3, pp 261–270 | Cite as

Elastic-plastic crack growth on plane strain bimaterial interface

  • Luo Xuefu
  • S. Aoki
Article

Abstract

Finite element computation are carried out to simulate plane strain crack growth on a bimaterial interface under the assumption of small scale yielding. The modified Gurson constitutive equation and the element vanish technique introduced by Tvergaard et al. are used to model the final formation of an open crack. It is found from the calculation that the critical fracture toughness for crack growth is much lower in bimaterials than that in homogeneous material. The critical fracture toughness is strongly dependent on material properties of the bimaterial pair and the mixed mode of remote loads. The interface crack grows in the more compliant (lower hardening) material or in the weaker (lower yield strength) material. In Mode-I loading, the crack grows zigzag along the interface.

Key Words

interface crack growth plane strain modified Gurson's model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams ML. Bulletin of the Seismological Society of American, 1959, 49: 199–204Google Scholar
  2. 2.
    Erdogan F. J Appl Mech, 1963, 30: 232–236MATHGoogle Scholar
  3. 3.
    Sih GC, Rice JR. J Appl Mech, 1964, 31: 477–482Google Scholar
  4. 4.
    England AH. J Appl Mech, 1965, 32: 400–402Google Scholar
  5. 5.
    Erdogan F. J Appl Mech, 1965, 32: 403–410MathSciNetGoogle Scholar
  6. 6.
    Rice JR, Sih GC. J Appl Mech, 1965, 32: 418–423Google Scholar
  7. 7.
    Rice JR. J Appl Mech, 1988, 55: 98–103Google Scholar
  8. 8.
    Shih CF, Asaro RJ. J Appl Mech, 1988, 55: 299–316Google Scholar
  9. 9.
    Shih CF, Asaro RJ. J Appl Mech, 1989, 56: 763–779CrossRefGoogle Scholar
  10. 10.
    Shih CF, Asaro RJ. Mat Sci Engng, 1989, A107: 145–157CrossRefGoogle Scholar
  11. 11.
    Zywicz E, Parks DM, J Appl Mech, 1989, 56: 577–584MATHCrossRefGoogle Scholar
  12. 12.
    Wang TC. Engng Fract Mech, 1990, 37: 527–538CrossRefGoogle Scholar
  13. 13.
    Needleman A. J Appl Mech, 1987, 54: 525–531MATHGoogle Scholar
  14. 14.
    Varias AG, O'Dowd NP, Asaro RJ, Shih CF. In: Metal-Ceramic Interface, Acta-Scripta Metallurgica Procceeding Series, Santa Barbara, 1990, 4: 375–382.Google Scholar
  15. 15.
    Gurson AL. Plastic flow and fracture behavior of ductile metarials incorporating void nucleation, growth and interaction. Brown Univ, 1975Google Scholar
  16. 16.
    Gurson AL. J Engng Mat Tech, 1977, 99: 2–15Google Scholar
  17. 17.
    Tvergaard V. Int J Fract, 1981, 17: 389–407CrossRefGoogle Scholar
  18. 18.
    Tvergaard V. Int J Solids Struct, 1982, 18: 659–672MATHCrossRefGoogle Scholar
  19. 19.
    Tvergaard V, Needleman A. Acta Metallurgica, 1984, 32: 157–169CrossRefGoogle Scholar
  20. 20.
    Needleman A. In: Theoretical and applied mechanics, North-Holland: Elsevier Science, 1989, 217–240Google Scholar
  21. 21.
    Needleman A, Rice JR. In: Mechanics of sheet metal forming, New York: Plenum Publishing Co, 1978, 237–267Google Scholar
  22. 22.
    Shih CF, Asaro RJ. Int J Fract, 1990, 42: 101–116CrossRefGoogle Scholar
  23. 23.
    Shih CF, Asaro RJ, O'Dowd NP. J Appl Mech, 1991, 58: 450–463Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1992

Authors and Affiliations

  • Luo Xuefu
    • 1
  • S. Aoki
    • 2
  1. 1.Tsinghua UniversityBeijingChina
  2. 2.Tokyo Institute of TechnologyJapan

Personalised recommendations