Skip to main content
Log in

Elastic-plastic crack growth on plane strain bimaterial interface

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Finite element computation are carried out to simulate plane strain crack growth on a bimaterial interface under the assumption of small scale yielding. The modified Gurson constitutive equation and the element vanish technique introduced by Tvergaard et al. are used to model the final formation of an open crack. It is found from the calculation that the critical fracture toughness for crack growth is much lower in bimaterials than that in homogeneous material. The critical fracture toughness is strongly dependent on material properties of the bimaterial pair and the mixed mode of remote loads. The interface crack grows in the more compliant (lower hardening) material or in the weaker (lower yield strength) material. In Mode-I loading, the crack grows zigzag along the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams ML. Bulletin of the Seismological Society of American, 1959, 49: 199–204

    Google Scholar 

  2. Erdogan F. J Appl Mech, 1963, 30: 232–236

    MATH  Google Scholar 

  3. Sih GC, Rice JR. J Appl Mech, 1964, 31: 477–482

    Google Scholar 

  4. England AH. J Appl Mech, 1965, 32: 400–402

    Google Scholar 

  5. Erdogan F. J Appl Mech, 1965, 32: 403–410

    MathSciNet  Google Scholar 

  6. Rice JR, Sih GC. J Appl Mech, 1965, 32: 418–423

    Google Scholar 

  7. Rice JR. J Appl Mech, 1988, 55: 98–103

    Google Scholar 

  8. Shih CF, Asaro RJ. J Appl Mech, 1988, 55: 299–316

    Google Scholar 

  9. Shih CF, Asaro RJ. J Appl Mech, 1989, 56: 763–779

    Article  Google Scholar 

  10. Shih CF, Asaro RJ. Mat Sci Engng, 1989, A107: 145–157

    Article  Google Scholar 

  11. Zywicz E, Parks DM, J Appl Mech, 1989, 56: 577–584

    Article  MATH  Google Scholar 

  12. Wang TC. Engng Fract Mech, 1990, 37: 527–538

    Article  Google Scholar 

  13. Needleman A. J Appl Mech, 1987, 54: 525–531

    MATH  Google Scholar 

  14. Varias AG, O'Dowd NP, Asaro RJ, Shih CF. In: Metal-Ceramic Interface, Acta-Scripta Metallurgica Procceeding Series, Santa Barbara, 1990, 4: 375–382.

  15. Gurson AL. Plastic flow and fracture behavior of ductile metarials incorporating void nucleation, growth and interaction. Brown Univ, 1975

  16. Gurson AL. J Engng Mat Tech, 1977, 99: 2–15

    Google Scholar 

  17. Tvergaard V. Int J Fract, 1981, 17: 389–407

    Article  Google Scholar 

  18. Tvergaard V. Int J Solids Struct, 1982, 18: 659–672

    Article  MATH  Google Scholar 

  19. Tvergaard V, Needleman A. Acta Metallurgica, 1984, 32: 157–169

    Article  Google Scholar 

  20. Needleman A. In: Theoretical and applied mechanics, North-Holland: Elsevier Science, 1989, 217–240

    Google Scholar 

  21. Needleman A, Rice JR. In: Mechanics of sheet metal forming, New York: Plenum Publishing Co, 1978, 237–267

    Google Scholar 

  22. Shih CF, Asaro RJ. Int J Fract, 1990, 42: 101–116

    Article  Google Scholar 

  23. Shih CF, Asaro RJ, O'Dowd NP. J Appl Mech, 1991, 58: 450–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by Fok Ying-Tung Education Foundation and National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuefu, L., Aoki, S. Elastic-plastic crack growth on plane strain bimaterial interface. Acta Mech Sinica 8, 261–270 (1992). https://doi.org/10.1007/BF02489250

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02489250

Key Words

Navigation