Journal of Hepato-Biliary-Pancreatic Surgery

, Volume 4, Issue 4, pp 431–435 | Cite as

Cytogenetic analysis of gallbladder neoplasms using fluorescence in situ hybridization (FISH)

  • Atsushi Nanashima
  • Hiroyuki Yamaguchi
  • Shinichi Shibasaki
  • Juan-Eiki Nishizawa-Takano
  • Takashi Tsuji
  • Terumitsu Sawai
  • Toru Yasutake
  • Hiroyuki Kusano
  • Tohru Nakagoe
  • Hiroyoshi Ayabe
Original Articles
  • 31 Downloads

Abstract

To characterize the numerical chromosome aberrations in gallbladder neoplasms, we examined surgically resected tissues using fluorescence in situ hybridization. The aberrations in 15 specimens of adenocarcinomas and 2 adenomas were compared with those in 4 samples of adenomyomatosis and 17 samples of normal epithelium. We calculated the frequency of aneusomy and determined the chromosome indexes (mean number of chromosomes per nucleus) of chromosomes 17 and 18. The pattern of DNA ploidy was analyzed by flow cytometry. In normal epithelium, adenomyomatosis and adenomas, DNA aneuploidy was not observed, while 13 (87%) carcinomas showed DNA aneuploidy, including 2 specimens with multiploidy. No numerical aberrations were observed in normal epithelium and adenomyomatosis. A numerical gain of chromosome 17 was observed in a single adenoma and in 10 (66%) carcinomas. A numerical gain of chromosome 18 was observed in 6 (40%) carcinomas, but not in other tissues. The chromosome index of chromosome 17 was significantly higher in adenomas and carcinomas (2.45±0.60 and 2.29±0.14, respectively) compared with normal epithelium. Our cytogenetic findings did not correlate with any histopathologic features of carcinomas. Our results indicated that the gains of chromosome 17 and 18 represented early chromosomal alterations in gallbladder neoplasms and were maintained in advanced carcinomas.

Key words

numerical chromosome aberrations chromosome 17 chromosome 18 DNA ploidy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsukuma H (1992) Incidence of cancer prediction in Japan up to the year 2015. Jpn J Cancer Clin 38:1–10Google Scholar
  2. 2.
    Koyama K, Goto H, Ouchi K, Sato T (1984) Nuclear DNA pattern of the gallbladder cancer. Tohoku J Exp Med 143:125–126PubMedCrossRefGoogle Scholar
  3. 3.
    Watanabe M, Asaka M, Tanaka J, Kurosawa M, Kasai M, Miyazaki T (1994) Point mutation of K-ras gene codon 12 in biliary tract tumors. Gastroenterology 107:1147–1153PubMedGoogle Scholar
  4. 4.
    Noravud N, Foster CS, Gilbertson JA, Silora K, Waxman J (1989) Oncogene expression in cholangiocarcinoma and in normal hepatic development. Hum Pathol 20:1163–1168Google Scholar
  5. 5.
    Diamantis I, Karamitopoulou E, Perentes E, Zimmermann A (1995) P53 protein immunoreactivity in extrahepatic bile duct and gallbladder cancer: Correlation with tumor grade and survival. Hepatology 22:774–779PubMedCrossRefGoogle Scholar
  6. 6.
    Hecht F, Kuban DJ, Berger C, Kaiser-McCaw Hecht B, Sandberg AA (1993) Adenocarcinoma of the gallbladder: Chromosome abnormalities in a genetic form of cancer. Cancer Genet Cytogenet 8:185–190CrossRefGoogle Scholar
  7. 7.
    Bardi G, Gorunova L, Limon J, Nedoszytko B, Johansson B, Pandis N, Mandahl N, Bak-Jensen E, Andren-Sandberg A, Rys J, Niezabitowsky A, Mitelman F, Heim S (1994) Abnormal karyotypes in three carcinomas of the gallbladder. Cancer Genet Cytogenet 76:15–18PubMedCrossRefGoogle Scholar
  8. 8.
    Pinkel D, Landeqent J, Collins C (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85:9138–9142PubMedCrossRefGoogle Scholar
  9. 9.
    Yasutake T, Tagawa Y, Miyashita K, Ishikawa H, Hara S, Okada D, Kuwahara K, Kawazoe N, Yamaguchi H, Tomita M (1989) Study of fluorescence in situ hybridization for detection of chromosome aberration. Hum Cell 2:436–438PubMedGoogle Scholar
  10. 10.
    Jibiki M (1994) Study of nuclear DNA content and chromosomal numerical aberrations using fluorescence in situ hybridization in colorectal polyps and colorectal adenomas. Acta Med Nagasaki 39:100–105Google Scholar
  11. 11.
    Nanashima A, Tagawa Y, Morinaga M, Kusano H, Nakagoe T, Ayabe H (1996) Quantitative analysis of numerical chromosome aberrations in various morphological types of colorectal carcinomas. Jpn J Gastroenterol 31:793–800CrossRefGoogle Scholar
  12. 12.
    Matsumura K, Kallioniemi A, Kallioniemi O, Chen L, Smith HS, Pinkel D, Gray J, Waldman FM (1992) Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res 52:3474–3477PubMedGoogle Scholar
  13. 13.
    Nanashima A, Tagawa Y, Yasutake T, Sawai T, Tuji T, Sasano O, Nakagoe T, Ayabe H (1997) Aneusomy of chromosome 18 is associated with the development and progression of colorectal carcinoma. Jpn J Gastroenterol (in press)Google Scholar
  14. 14.
    Yasutake T (1990) Surgical application of DNA ploidy to nonsmall-cell lung carcinoma. Acta Med Nagasaki 35:145–151Google Scholar
  15. 15.
    Eastmond DA, Pinkel D (1990) Detection of aneuploidy and aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome-specific DNA probes. Mutation Res 234:303–318PubMedGoogle Scholar
  16. 16.
    Dhingra K, Sneige N, Pandita TK, Johnston DA, Lee JS, Enami K, Hortobagyi GN, Hittelman WN (1994) Quantitative analysis of chromosome in situ hybridization signal in paraffin-embedded tissue sections. Cytometry 16:100–112PubMedCrossRefGoogle Scholar
  17. 17.
    Japanese Society of Biliary Surgery (1993) General rules for surgical and pathological studies on cancer of biliary tract, 3rd edn. Kanehara, TokyoGoogle Scholar
  18. 18.
    Visscher DW, Wallis TL, Crissman JD (1996) Evaluation of chromosome aneuploidy in tissue sections of preinvasive breast carcinomas using interphase cytogenetics. Cancer 77:315–320PubMedCrossRefGoogle Scholar
  19. 19.
    Lee JS, Pathak S, Hopwood V, Tomasovic B, Mullins TD, Baker FL, Spitzer G, Neidhart JA (1987) Involvement of chromosome 7 in primary lung tumor and nonmalignant normal lung tissue Cancer Res 47:6349–6352PubMedGoogle Scholar
  20. 20.
    Rao PH, Mathew S, Lauwers G, Rodriguez E, Kelsen DP, Chaganti RSK (1993) Interphase cytogenetics of gastric and esophageal adenocarcinomas. Diagn Mol Pathol 2:264–268PubMedGoogle Scholar
  21. 21.
    Yamaguchi H (1992) Analysis of numerical chromosome aberration of gastric cancer: Application of fluorescence in situ hybridization using chromosome-specific DNA probes. Acta Med Nagasaki 37:163–170Google Scholar
  22. 22.
    Tagawa Y, Sawai T, Nakagoe T, Morinaga M, Yasutake T, Ayabe H, Tomita M (1996) Numerical aberrations of chromosomes 11 and 17 in colorectal adenocarcinomas. Surg Today 26:869–874PubMedCrossRefGoogle Scholar
  23. 23.
    Morinaga M, Tagawa Y, Yasutake T, Miyashita K, Sawai T, Matsumoto Y, Nanashima A, Hatano K, Uchikawa T, Fujise N, Taniguchi Y, Nishizawa JE, Matsuo S, Nakagoe T, Ayabe H, Tomita M (1994) Detection of chromosomal numerical aberration in early colorectal carcinomas using fluorescence in situ hybridization. Jpn J Cancer Chemother 21 (Suppl I):75–81Google Scholar
  24. 24.
    Tanaka K, Testa JR (1987) Assessment of methods for the cytogenetic analysis of human solid tumors. J Natl Cancer Inst 79:1287–1293PubMedGoogle Scholar
  25. 25.
    Nishizawa-Takano JE, Ayabe H, Hatano K, Yamaguchi H, Tagawa Y (1996) Gall bladder cancer. A comparative study among clinicopathologic features, AgNORs, and DNA content analysis. Dig Dis Sci 41:840–847PubMedCrossRefGoogle Scholar
  26. 26.
    Crocker J (1990) Nucleolar organiser regions. In: James CE Underwood (ed) Pathology of the nucleus. Springer Berlin Heidelberg New York London Paris Tokyo Hong Kong, pp 92–149Google Scholar
  27. 27.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Atsushi Nanashima
    • 1
  • Hiroyuki Yamaguchi
    • 1
  • Shinichi Shibasaki
    • 1
  • Juan-Eiki Nishizawa-Takano
    • 1
  • Takashi Tsuji
    • 1
  • Terumitsu Sawai
    • 1
  • Toru Yasutake
    • 1
  • Hiroyuki Kusano
    • 1
  • Tohru Nakagoe
    • 1
  • Hiroyoshi Ayabe
    • 1
  1. 1.First Department of SurgeryNagasaki University School of MedicineNagasakiJapan

Personalised recommendations