Auxin-induced cell elongation and cell wall changes

  • Yoshio Masuda
Invited Article


It has been well known that auxin induces cell elongation through its effect on modifications of the cell wall. The present review will discuss cell wall modifications, physical and biochemical, as the background of the former, based on the experimental results from our laboratory and from others, with the historical background. Discussions will particularly put stress on the auxin effect on the cell wall in terms of the following studies, namely, (1) measurements of the mechanical property of the cell wall, and (2) biochemical studies on the polysaccharide molecules of the cell wall.

Key words

Auxin Cell elongation Cell wall−(1»3), (1»4)-β-D-Glucan Mechanical property Xyloglucan 


  1. Albersheim, P.. 1976. The Primary Cell Wall.In J. Bonner and J.E. Varner, ed., Plant Biochemistry, 3ed., pp. 91–114. Academic Press, New York.Google Scholar
  2. Baker, D.B. andP.M. Ray. 1965. Relation between effects of auxin on cell wall synthesis and cell elongation. Plant Physiol.40: 360–368.PubMedGoogle Scholar
  3. Black, M., C. Bullock, E.N. Chantler, R.A. Clarke, A.D. Hanson andG.M. Jolley. 1967. Effect of inhibitors of protein synthesis on the plastic deformation and growht of plant tissues. Nature215: 1289–1290.CrossRefGoogle Scholar
  4. Boroughs, H. andJ. Bonner. 1953. Effects of indoleacetic acid on metabolic pathways. Arch. Biochem. Biophys.46: 279–290.PubMedCrossRefGoogle Scholar
  5. Brauner, L. andM. Hasman. 1952. Weitere Untersuchungen über den Wirkungsmechanismus des Heteroauxins bei der Wasseraufnahme von Pflanzenparenchymen. Protoplasma41: 302–326.CrossRefGoogle Scholar
  6. Burström, H. 1942. The influence of heteroauxin on cell growth and root development. Ann. Agricult. Coll. Sweden10: 209–242.Google Scholar
  7. — 1953. Studies on growth and metabolism of roots. IX. Cell elongation and water absorption. Physiol. Plant.6: 262–276.CrossRefGoogle Scholar
  8. — 1958. The influence of growth regulators on the composition of the cell wall. Kungl. Fysiogr. Säll. Lund Förhandl.28: 53–64.Google Scholar
  9. Burström, H.G., I. Uhrström andR. Wurscher. 1967. Growth, turgor, water potential and Young's modulus in pea internodes. Physiol. Palnt.20: 213–231.CrossRefGoogle Scholar
  10. — 1971. Resonance frequency measurements on plant tissues. Endeavour30: 8790.Google Scholar
  11. Carpita, N.C.. 1984. Cell wall development in maize coleoptiles. Plant Physiol.76: 205–212.PubMedGoogle Scholar
  12. Christiansen, G.S. andK.V. Thimann. 1950. The metabolism of stem tissue during growth and its inhibition. I. Carbohydrates. Arch. Biochem.26: 230–247.PubMedGoogle Scholar
  13. Cleland, R.. 1958. A separation of auxin-induced cell wall loosening into its plastic and elastic components. Physiol. Plant.11: 599–609.CrossRefGoogle Scholar
  14. — 1959. Effect of osmotic concentration on auxin-action and on irreversible and reversible expansion of the Avena coleoptile. Physiol. Plant.12: 809–825.CrossRefGoogle Scholar
  15. — 1967. Extensibility of isolated cell walls: Measurement and changes during cell elongation. Planta74: 197–209.CrossRefGoogle Scholar
  16. — 1971. Cell wall extension. Ann. Rev. Plant Physiol.22: 197–222.CrossRefGoogle Scholar
  17. Cosgrove, D.. 1986. Biophysical, control of plant cell growth. Ann. Rev. Plant Physiol.37: 377–405.Google Scholar
  18. Cosgrove, D.J.. 1987a. Wall relaxation and the driving forces for cell expansive growth. Plant Physiol. (review)84: 561–564.Google Scholar
  19. — 1987b. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta171: 266–278.PubMedCrossRefGoogle Scholar
  20. — andS.A. Sovonick-Dunford. 1989. Mechanism of gibberellin-dependent stem elongation in peas. Plant Physiol.89: 184–191.PubMedGoogle Scholar
  21. Darvill, A.G., C.J. Smith andM.A. Hall. 1978. Cell wall structure and elongation growth inZea mays coleoptile tissue. New Phytol.80: 503–516.CrossRefGoogle Scholar
  22. De Vries, H.. 1874. Über die Dehnbarkeit wachsender Sprosse. Arbeit. d. Bot. Inst. Würzburg1: 519–545.Google Scholar
  23. Fry, S.C.. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann. Rev. Plant Physiol.37: 165–186.Google Scholar
  24. —. 1988. The Growing Plant Cell Wall: Chemical and Metabolis Analysis. Longman Sci. & Techn., Essex.Google Scholar
  25. Fry, S.T. 1989. Dissecting the complexities of the plant cell wall. Plants Today, pp. 126–132.Google Scholar
  26. Fujihara, S., R. Yamamoto andY. Masuda. 1978. Viscoelastic properties of plant cell walls. I. Mathematical formulation for stress relaxation with consideration for pre-extension rate. Biorheol.15: 63–75.Google Scholar
  27. —,—and—. 1978. Viscoelastic properties of plant cell walls. II. Effect of pre-extension rate on stress relaxation. Biorheol.15: 77–85.Google Scholar
  28. —,—and—. 1978. Viscoelastic properties of plant cell walls. III. Hysteresis loop in the stress-strain curve at constant strain rate. Biorheol.15: 87–97.Google Scholar
  29. Furuya, M., Y. Masuda andR. Yamamoto. 1972. Effects of environmental factors on mechanical properties of the cell wall in rice coleoptiles. Developm. Growth & Differ.14: 95–105.CrossRefGoogle Scholar
  30. Gilkes, N.R. andM.A. Hall. 1977. The hormonal control of cell wall turnover inPisum sativum L. New Phytol.78: 1–15.CrossRefGoogle Scholar
  31. Goldberg, R.. 1980. Cell wall polysaccharidase activities and growht processes: A possible relationship. Physiol. Plant.50: 261–264.CrossRefGoogle Scholar
  32. Göring, H. andE. Reckin. 1968. Einfluss derd-Galactose auf den Kohlenhydratstoffwechsel pflanzlicher Gewebe. Flora159: 82–103.Google Scholar
  33. Gubler, F. andB.A. Stone. 1985. Release of ferulic acid esters from barley aleurone. II. Characterization of the feruloyl compounds released in response to GA3. Aust. J. Plant Physiol.12: 307–317.CrossRefGoogle Scholar
  34. Hager, A., H. Menzel andA. Krauss. 1971. Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta100: 47–75.CrossRefGoogle Scholar
  35. Hartley, R.D. andE.C. Jones. 1976. Diferulic acid as a component of cell walls ofLolium multiflorum. Phytochem.15: 1157–1160.CrossRefGoogle Scholar
  36. Haughton, P.M. andD.B. Sellen. 1969. Dynamic mechanical properties of the cell walls of some green algae. J. Exp. Bot.20: 516–535.Google Scholar
  37. Hayashi, T., Y.S. Wong andG.A. Maclachlan. 1984. Pea xyloglucan and cellulose. II. Hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol.75: 605–610.PubMedGoogle Scholar
  38. Heyn, A.N.J. 1930. On the relation between growth and extensibility of the cell wall. Proc. Roy. Acad. Amsterdam33: 1045–1058.Google Scholar
  39. — 1931. Der Mechanismus der Zellstreckung. Rev. Trav. Bot. Neerl.28: 113–241.Google Scholar
  40. — andJ. van Overbeek. 1931. Weiteres Versuchsmaterial zur plastischen und elestischen Dehnbarkeit der Membran. Proc. Kon. Akad. Wetens. Amsterdam34: 1190–1195.Google Scholar
  41. — 1934. Die Plastizität der Zellmembran unter Einfluss von Wuchsstoff. Kon. Akad. Wetens. Amsterdam37: 180–182.Google Scholar
  42. — 1940. The physiology of cell elongation. Bot. Rev.6: 515–574.CrossRefGoogle Scholar
  43. Hoson, T. 1989. Significance of polysaccharide synthesis in cell wall loosening in rice coleoptiles grown under water.In M. Tazawaet al., ed., Plant Water Relations and Growth under Stress, pp. 365–368. Yamada Sci. Foundation.Google Scholar
  44. — 1990a. Effect of auxin on autolysis of cell walls in azuki bean epicotyls. Plant Cell Physiol.31: 281–287.Google Scholar
  45. — 1990b. Auxin-regulated metabolic turnover of cell wall polysaccharides. Chemical Regul. in Plants25: 40–56 (in Japanese).Google Scholar
  46. Hoson, T. and Y. Masuda. 1986. Effects of lectins and sugar-recognizing antibodies on auxin-induced growth. Proc. Fourth Cell Wall Meeting, Paris., pp. 242–243.Google Scholar
  47. ——. 1987. Effect of lectins on auxin-induced elongation and wall loosening in oat coleoptile and azuki bean epicotyl segments. Physiol. Plant.71: 1–8.CrossRefGoogle Scholar
  48. Hoson, T. and Y. Masuda. 1989. Antibodies and lectins specific for xyloglucans inhibit auxin-induced elongation of azuki bean epicotyls. Abstract of Fifth Cell Wall Meeting, S.C. Fry, C.T. Brett and J.S.G. Reid, ed., Edinburgh, p. 132.Google Scholar
  49. — andD.J. Nevins. 1989a. Antibodies as probes for the study of location and metabolism of (1→3), (1→4)-β-d-glucans. Physiol. Plant.75: 452–457.CrossRefGoogle Scholar
  50. ——. 1989b. β-d-Glucan antibodies inhibit auxininduced cell elongation and changes in the cell wall ofZea coleoptile segments. Plant Physiol.90: 1353–1358.PubMedGoogle Scholar
  51. ——., 1989c. Effect of anti-wall protein antibodies on auxin-induced elongation, cell wall loosening, and β-d-glucan degradation in maize coleoptile segments. Physiol. Plant.77: 208–215.CrossRefGoogle Scholar
  52. — andS. Wada. 1980. Role of hydroxyprolin-rich cell wall protein in growth regulation of rice coleoptiles grown on or under water. Plant Cell Physiol.21: 511–524.Google Scholar
  53. —— 1983. Possible role of hexosamine-containing cell wall component in growth regulation of rice coleoptiles. Plant Cell Physiol.24: 1421–1430.Google Scholar
  54. —— 1985. Tunicamycin-induced growth and inhibition of glucosamine incorporation into cell walls of rice coleoptiles. Physiol. Plant.64: 185–189.CrossRefGoogle Scholar
  55. Huber, D.J. andD.J. Nevins. 1980. β-d-Glucan hydrolase activity inZea coleoptile cell wall. Plant Physiol.65: 768–773.PubMedGoogle Scholar
  56. ——. 1981. Partial purification of endoand exo-β-d-glucanase enzymes fromZea mays L. seedlings and their involvement in cell wall autohydrolysis. Planta151: 206–214.CrossRefGoogle Scholar
  57. Inouhe, M., R. Yamamoto andY. Masuda. 1984. Auxin-induced changes in the molecular weight distribution of cell wall xyloglucans inAvena coleoptiles. Plant Cell Physiol.25: 1341–1351.Google Scholar
  58. ———. 1986. Inhibition of IAA-induced cell elongation inAvena coleoptile segments by galactose: Its effect on UDP-glucose formation. Physiol. Plant.66: 370–376.CrossRefGoogle Scholar
  59. ———. 1987a. UDP-Glucose level as a limiting factor for IAA-induced cell elongation inAvena coleoptile segments. Physiol. Plant.69: 49–54.CrossRefGoogle Scholar
  60. ———. 1987b. Effects of indoleacetic acid and galactose on the UTP level and UDP-glucose formation inAvena coleoptile andVigna epicotyl segments. Physiol. Plant.69: 579–585.CrossRefGoogle Scholar
  61. Jacobs, M. andP.M. Ray. 1975. Promotion of xyloglucan metabolism by acid pH Plant Physiol.56: 373–376.PubMedGoogle Scholar
  62. Jansen, E.F., R. Jang, P. Albersheim andJ. Bonner. 1960. Pectic metabolism of growing cell walls. Plant Physiol.35: 87–97.PubMedGoogle Scholar
  63. Kamisaka, S. 1989. The structure and function of feruloylated polysaccharides in the cell wall. Chemical Regul. in Plants.24: 82–93 (in Japanese).Google Scholar
  64. —,H. Sano, M. Katsumi andY. Masuda. 1972. Effects of cyclic AMP and gibberellic acid on lettuce hypocotyl elongation and mechanical properties of its cell wall. Plant Cell Physiol.13: 167–173.Google Scholar
  65. —,S. Takeda, K. Takahashi andK. Shibata. 1990. Diferulic and ferulic acid in the cell wall ofAvena coleoptiles—Their relationships to mechanical properties of the cell wall. Physiol. Plant.78: 1–7.CrossRefGoogle Scholar
  66. Kamiya, N., M. Tazawa andT. Takata. 1963. The relation of turgor pressure to cell volume inNitella with special reference to mechanical properties of the cell wall. Protoplasma57: 501–521.CrossRefGoogle Scholar
  67. Kato, Y., N. Asano andK. Matsuda. 1977. Isolation of xyloglucans from etiolated Glycine max andVigna sesquipedalis hypocotyls. Plant Cell Physiol.18: 821–829.Google Scholar
  68. Kato, Y., J. Azuma and T. Koshijima. 1983. A new feruloylated trisaccharide from bagasse. Chem. Lett. 137–140.Google Scholar
  69. —, andK. Matsuda. 1985. Xyloglucan in the cell walls of suspension-cultured rice cells. Plant Cell Physiol.26: 437–445.Google Scholar
  70. — andD.J. Nevins. 1984. Enzymic dissociation ofZea shoot cell wall polysaccharides. II. Dissociation of (1→3), (1→4)-β-d-glucan by purified (1→3), (1→4), β-d-glucan 4-glucanohydrolase fromBacillus subtilis. Plant Physiol.75: 745–752.PubMedGoogle Scholar
  71. Katou, K. andM. Furumoto. 1986a. A mechanism of respirationdependent water uptake in higher plants. Protoplasma130: 80–82.CrossRefGoogle Scholar
  72. ——. 1986b. A mechanism of respirationdependent water uptake enhanced by auxin. Protoplasma133: 174–185.CrossRefGoogle Scholar
  73. Katsumi, M. andH. Kazama. 1978. Gibberellin control of cell elongation in cucumber hypocotyl sections. Bot. Mag. Tokyo, Sp. Issue1: 141–158.Google Scholar
  74. Katz, M. andL. Ordin. 1967. Metabolic turnover in cell wall constituents ofAvena sativa L. coleoptile sections. Biochem. Biophys. Acta141: 118–125.PubMedGoogle Scholar
  75. Kawamura, H., S. Kamisaka andY. Masuda. 1976. Regulation of lettuce hypocotyl elongation by gibberellic acid. Correlation between cell elongation, stress-relaxation properties of the cell wall and wall polysaccharide content. Plant Cell Physiol.17: 23–34.Google Scholar
  76. Ketellapper, H.J. 1953. The mechanism of the action of indole-3-acetic acid on the water absorption byAvena coleoptile sections. Acta Bot. Neerl.2: 387–444.Google Scholar
  77. Keyes, G., M.E. Sorrells andT.L. Setter. 1990. Gibberellic acid regulates cell wall extensibility in wheat (Triticum aestivum L.). Plant Physiol.92: 242–245.PubMedGoogle Scholar
  78. Kögl, F. 1956. Over de Invloed van Hetero-auxine op Biochemische Processen in de Kiemplant vanAvena sativa. Proc. Ned. Akad. Wet. Amsterdam59B: 231–241.Google Scholar
  79. Kutschera, U., R. Bergfeld andP. Schopfer. 1987. Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles. Planta170: 168–180.CrossRefGoogle Scholar
  80. — andW.R. Briggs. 1987. Differential effect of auxin on in vivo extensibility of cortical cylinder and epidermis in pea internodes. Plant Physiol.84: 1361–1366.PubMedGoogle Scholar
  81. ——. 1988. Growth, in vivo extensibility, and tissue tension in developing pea internodes. Plant Physiol.86: 306–311.PubMedGoogle Scholar
  82. — andP. Schopfer. 1986. Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles. Planta167: 527–535.CrossRefGoogle Scholar
  83. Labavitch, J.M. andP.M. Ray. 1974a. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol.53: 669–673.PubMedGoogle Scholar
  84. ——. 1974b. Relationship between promotion of xyloglucan metabolism and induction of elongation by indoleacetic acid. Plant Physiol.54: 499–502.PubMedGoogle Scholar
  85. Labrador, E. andD.J. Nevins. 1989. An exo-β-d-glucanase derived fromZea coleoptile walls with a capacity to elicit cell elongation. Physiol. Plant.77: 479–486.CrossRefGoogle Scholar
  86. Lamport, D.T.A. 1970. Cell wall metabolism. Ann. Rev. Plant Physiol.21: 235–270.CrossRefGoogle Scholar
  87. Lee, S., A. Kivilaan andR.S. Bandurski. 1967. In vitro autolysis of plant cell walls. Plant Physiol.42: 968–972.PubMedGoogle Scholar
  88. Lockhart, J.A. 1965. Cell extension.In J. Bonner and J.E. Varner, eds., Plant Biochemistry, pp. 826–849.Google Scholar
  89. —,C. Bretz andR. Kenner. 1967. An analysis of cell wall extension. Ann New York Acad. Sci.144: 19–33.Google Scholar
  90. Loescher, W. andD.J. Nevins. 1972. Auxin-induced changes inAvena coleoptile cell wall composition. Plant Physiol.50: 556–563.PubMedGoogle Scholar
  91. ——. 1973. Turgor-dependent changes inAvena coleoptile cell wall composition. Plant Physiol.52: 248–251.PubMedGoogle Scholar
  92. Luttenegger, D.G. andD.J. Nevins. 1985. Transient nature of a (1→3), (1→4)-β-d-glucan inZea mays coleoptile cell walls. Plant Physiol.77: 175–178.PubMedGoogle Scholar
  93. Masuda, Y. 1961. Effect of auxin and oxalic acid on the cell wall property ofAvena coleoptile. Plant Cell Physiol.2: 129–138.Google Scholar
  94. — 1968. Role of cell-wall-degrading enzymes in cellwall loosening in oat coleoptiles. Planta83: 171–184.CrossRefGoogle Scholar
  95. — 1969. Auxin-induced cell expansion in relation to cell wall extensibility. Plant Cell Physiol.10: 1–9.Google Scholar
  96. Masuda, Y. 1977. Wall extensibility in relation to auxin effects.In P.E. Pilet ed., Plant Growth Regulation, pp. 21–26, Springer-Verlag.Google Scholar
  97. — 1978. Auxin-induced cell wall loosening. Bot. Mag. Special Issue1: 103–123.Google Scholar
  98. — 1985. Cell wall modifications during auxin-induced cell extension in monocotyledonous and dicotyledonous plants. Biol. Plant (Praha)27: 119–124.Google Scholar
  99. Masuda, Y., M. Inouhe andR. Yamamoto. 1989. Auxin-regulated extension growth of organ segments.In M. Tazawaet al. ed. Plant Water Relations and Growth under Stress, pp. 291–297, Yamada Sci. Foundation, Osaka.Google Scholar
  100. — andS. Wada. 1966. Requirement of RNA for the auxininduced elongation of oat coleoptile. Physiol. Plant.19: 1055–1063.CrossRefGoogle Scholar
  101. ——. 1967. Effect of β-(1, 3)-glucanase on the elongation growth of oat coleoptile. Bot. Mag.80: 100–102.Google Scholar
  102. — andR. Yamamoto. 1972. Control of auxin-induced stem elongation by the epidermis. Physiol. Plant.27: 109–115.CrossRefGoogle Scholar
  103. ——. 1985. Cell-wall changes during auxininduced cell extension. Mechanical properties and constituent polysaccharides of the cell wall.In C.T. Brett and J.R. Hillman ed., Biochemistry of Plant Cell Walls, pp. 269–300, Cambridge Univ. Press, Cambridge.Google Scholar
  104. Masuda, Y., Y., R. Yamamoto and E. Tanimoto. 1971. Auxin-induced changes in cell wall properties and growth ofAvena coleoptiles and green pea epicotyls.In D.J. Carr ed., Plant Growth Substances, 1970, pp. 17–22, Springer-Verlag.Google Scholar
  105. Matchett, W.H. andJ.F. Nance. 1962. Cell wall breakdown and growth in pea seedling stems. Amer. J. Bot.49: 311–319.CrossRefGoogle Scholar
  106. McDougall, G.J. andS.C. Fry. 1988. Inhibition of auxin-stimulated growth of pea stem segmets by a specific nonasaccharide of xyloglucan. Planta175: 412–416.CrossRefGoogle Scholar
  107. Morre, D.J. andJ. Bonner. 1965. A mechanical analysis of root growth. Physiol. Planta.18: 635–649.CrossRefGoogle Scholar
  108. Nakamura, T., S. Sekine, K. Arai andN. Takahashi. 1975. Effects of gibberellic acid and indole-3-acetic acid on stressrelaxation properties of pea hook cell wall. Plant Cell Physiol.16: 127–138.Google Scholar
  109. Nakamura, Y. andK. Hess. 1938. Zur Kenntniss der chemischen Zusammensetzung von Mais-Koleoptilen. Ber. Deut. Chem. Ges.71: 145–152.Google Scholar
  110. Nevins, D.J., P.D. English andP. Albersheim. 1968. Changes in cell wall polysaccharides associated with growth. Plant Physiol.43: 914–922.PubMedGoogle Scholar
  111. — 1975a. The effect of nojirimycin on plant growth and its implications concerning a role for exo-β-glucanases in auxin-induced cell expansion. Plant Cell Physiol.16: 347–356.Google Scholar
  112. — 1975b. The in vitro simulation of IAA-induced modification ofAvena cell wall polysaccharides by an exo-glucanase. Plant Cell Physiol.16: 495–503.Google Scholar
  113. —,D.J. Huber, R. Yamamoto andW.H. Loescher. 1977. β-d-Glucan ofAvena coleoptile cell walls. Plant Physiol.60: 617–621.PubMedGoogle Scholar
  114. —,R. Yamamoto andD.J. Huber., 1978. Cell wall β-d-glucans of five grass species. Phytochem.17: 1503–1505.CrossRefGoogle Scholar
  115. Nishitani, K. andY. Masuda. 1980. Modifications of cell wall polysaccharides during auxin-induced growth in azuki bean epicotyl segments. Plant Cell Physiol.21: 169–181.Google Scholar
  116. . 1981. Auxin-induced changes in the cell wall structure: Changes in the sugar compositions, intrinsic viscosity and molecular weight distribution of matrix polysaccharides of the epicotyl cell wall ofVigna angularis. Physiol. Plant.52: 482–494.CrossRefGoogle Scholar
  117. . 1983., Auxin-induced changes in the cell wall xyloglucans: Effects of auxin on the two different subfractions of xyloglucas in the epicotyl cell wall ofVigna angularis. Plant Cell Physiol.24: 345–355.Google Scholar
  118. . 1982/83. Acid pH-induced structural changes in cell wall xyloglucans inVigna angularis epicotyl segments. Plant Sci. Lett.28: 87–94.Google Scholar
  119. — andD.J. Nevins. 1988. Enzymic analysis of feruloylated arabinoxylans (Feraxan) derived fromZea mays cell walls. I. Purification of novel enzymes capable of dissociating Feraxan fragments fromZea mays coleoptile cell walls. Plant Physiol.87: 883–890.PubMedGoogle Scholar
  120. . 1989. Enzymic analysis of feruoylated arabinoxylans (Feraxan) derived fromZea mays cells walls. II. Fractionation and partial characterization of Feraxan fragments dissociated byBacillus subtilis enzyme (Feraxanase). Plant Physiol.91: 242–248.PubMedGoogle Scholar
  121. Nishitani, K. and D.J. Nevins. 1990. Enzyme analysis of feruloylated arabinoxylans (Feraxan) derived fromZea mays cell wall. III. Structural changes in the feraxan during coleoptile elongation. Plant Physiol.93 (in press).Google Scholar
  122. O'Dwyer, M.H. 1926. The hemicelluloses. IV. The hemicelluloses of beech wood. Biochem. J.34: 656–664.Google Scholar
  123. — 1940. The hemicelluloses of the wood of English oak. The structure of hemicellulose B. Biochem. J.34: 149–152.PubMedGoogle Scholar
  124. Olson, A.C., J. Bonner andD.J. Morré. 1965. Force extension analysis ofAvena coleoptile cell walls. Planta66: 126–134.CrossRefGoogle Scholar
  125. Okamoto, H., O. Liu, K. Nakahori and K. Katou. 1989. Control of elongation growth under osmotic and salt stress.In M. Tazawaet al. ed., Plant Water Relations and Growth under Stress, pp. 323–333, Yamada Sci. Foundation.Google Scholar
  126. Ordin, L. andJ. Bonner. 1957. Effect of galactose on growth and metabolism of Avena coleoptile sections. Plant Physiol.32: 212–215.PubMedGoogle Scholar
  127. R. Cleand andJ. Bonner 1956. Influence of auxin on cell-wall metabolism. Proc. Nat. Acad. Sci., U.S.A.41: 1023–1029.CrossRefGoogle Scholar
  128. . 1957. Methyl esterification of cell wall constituents under the influence of auxin. Plant Physiol.32: 216–220.PubMedGoogle Scholar
  129. Pohl, R. 1957. Versuche zur Analyse des Wuchsstoff-Primäreffektes bei der Zellstreckung. Physiol. Plant.10: 681–696.CrossRefGoogle Scholar
  130. Preston, R.D. andJ. Hepton. 1960. The effect of inxoleacetic acid on cell wall extensibility inAvena coleoptiles. J. Exp. Bot.31: 13–27.Google Scholar
  131. Probine, M.C. andR.B. Preston. 1962. Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca, L. J. Exp. Bot.13: 111–127.Google Scholar
  132. Ray, P.M. 1962. Cell wall synthesis and cell elongation in oat coleoptile tissue. Am. J. Bot.49: 928–939.CrossRefGoogle Scholar
  133. — 1963. Sugar composition of oat-coleoptile cell walls. Biochem. J.89: 144–150.PubMedGoogle Scholar
  134. — 1967. Radioautographic study of cell wall deposition in growing plant cells. J. Cell Biol.35: 659–674.PubMedCrossRefGoogle Scholar
  135. Rayle, D.L. 1973. Auxin-induced hydrogen ion secretion inAvena coleoptiles and its implications. Planta114: 63–67.CrossRefGoogle Scholar
  136. Revilla, G. andI. Zarra. 1987. Changes in the molecular weight distribution of the hemicellulosic polysaccharides from rice coleoptiles growing under different conditions. J. Exp. Bot.38: 1818–1825.Google Scholar
  137. Ruge, U. 1937. Zur Charakteristik einer für die Physiolgie der Zellstreckung wichtigen Intermicellarsubstanz planzlicher Membranen. Biochem. Zeits.295: 29–43.Google Scholar
  138. Sachs, J. 1882.Vorlesungen über Pflanzenphysiologie. Jena.Google Scholar
  139. Sakurai, N., S. Fujihara, R. Yamamoto andY. Masuda. 1982. A stress-relaxation parmaeter b of the oat coleoptile cell wall and implication in cell wall loosening. J. Plant Growth Regul.1: 75–83.Google Scholar
  140. — andY. Masuda. 1977. Effect of indole-3-acetic acid on cell wall loosening: Changes in mechanical properties and noncellulosic glucose content ofAvena coleoptile cell wall. Plant Cell Physiol.18: 587–594.Google Scholar
  141. . 1987a. Auxin-induced changes in barley coleoptile cell wall composition. Plant Cell Physiol.19: 1217–1223.Google Scholar
  142. 1978b. Auxin-induced extension, cell wall loosening and changes in the wall polysaccharide content of barley coleoptile segments. Plant Cell Physiol.19: 1225–1233.Google Scholar
  143. —,D.J. Nevins andY. Masuda. 1977. Auxin- and hydrogen ion-induced cell wall loosening and cell extension inAvena coleoptile segments. Plant Cell Physiol.18: 371–380.Google Scholar
  144. —,K. Nishitani andY., Masuda. 1979. Auxin-induced changes in the molecular weight of hemicellulosic polysaccharides of theAvena coleoptile cell wall. Plant Cell Physiol.20: 1349–1357.Google Scholar
  145. Schulze, E. 1891. Zur Kenntniss der chemischen Zusamensetzung der pflanzlichen Zellmembranen. Ber. Deut. Chem. Ges.24: 2277–2287.Google Scholar
  146. Seara, J., G. Nicolas andE. Labrador. 1988. Autolysis of the cell wall. Its possibel role in endogenous and IAA-induced growth in epicotyls ofCicer arietinum. Physiol. Plant.72: 769–774.CrossRefGoogle Scholar
  147. Söding, H. 1931. Wachstum und Wanddehnbarkeit bei der Haferkoleoptile. Jahrb. f. wiss. Bot.74: 127–151.Google Scholar
  148. — 1932. Uber das Streckungswachstum der Zellwand. Ber. Deut. Bot. Ges.50: 117–122.Google Scholar
  149. Sone, Y., J. Kuramae, S. Shibuya andA. Misaki. 1989b. Immunochemical specificities of antibody to the heptasaccharide unit of plant xyloglucan. Agric. Biol. Chem.53: 2821–2823.Google Scholar
  150. Stinard, P.S. andD.J. Nevins. 1980. Distribution of noncellulosic β-d-glucans in grasses and other monocots. Phytochem.19: 1467–1468.Google Scholar
  151. Tagawa, T. andJ. Bonner. 1957. Mechanical properties of theAvena coleoptile as related to auxin and to ionic interactions. Plant Physiol.32: 207–212.PubMedGoogle Scholar
  152. Taiz, L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Ann. Rev. Plant Physiol.35: 585–657.Google Scholar
  153. Talmadge, R.W., K. Keegstra, W.D. Bauer andP. Albersheim. 1973. The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol.51: 158–173.PubMedGoogle Scholar
  154. Tanimoto, E. andM. Igari. 1976. Correlation between β-galactosidase and auxin-induced elongation growth in etiolated pea stems. Plant Cell Physiol.17: 673–682.Google Scholar
  155. — andY. Masuda. 1971. Role of the epidermis in auxin-induced elongation of light-grown pea stem segments. Plant Cell Physiol.12: 663–673.Google Scholar
  156. Taylor, A. andD.J. Gosgrove. 1989. Gibberellic acid stimulation of cucumber hypocotyl elongation. Effects on growth, turgor, osmotic pressure, and cell wall properties. Plant Physiol.90: 1335–1340.PubMedGoogle Scholar
  157. Terry, M.E. andB.A. Bonner. 1980. An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol.66: 321–325.PubMedGoogle Scholar
  158. —,R.L. Jones andB.A. Bonner. 1981. Soluble cell wall polysaccharides released from pea stems by centrifugation. Plant Physiol.68: 531–537.PubMedGoogle Scholar
  159. Thimann, K.V. andJ. Bonner 1933. The mechanisms of the action of the growth substance of plants. Proc. Roy. Soc. (London)113B: 126–149.Google Scholar
  160. — andC.L. Schneider. 1938. Differential growth in plant tissues. Amer. J. Bot.25: 627–641.CrossRefGoogle Scholar
  161. Tobollsky, A.V. andK. Murakami. 1959. Existence of a sharply defined maximum relaxation time for monodisperse polystyrene. J. Polymer Sci.40: 443–456.CrossRefGoogle Scholar
  162. Ursprung, A. andG. Blum. 1924. Eine Methode zur Messung des Wand- und Turgordruckes der Zelle, nebst Anwendung. Jb. Wiss. Bot.63: 1–110.Google Scholar
  163. van Overbeek, J. andF.W. Went. 1937. Mechanism and quantitative application of the pea test. Bot. Gaz.99: 22–41.CrossRefGoogle Scholar
  164. Virgin, H.I. 1955. A new method for the determination of the turgor of plant tissues. Physiol. Plant.8: 954–962.CrossRefGoogle Scholar
  165. Wada, S., E. Tanimoto andY. Masuda. 1968. Cell elongation and metabolic turnover of the cell wall as affected by auxin and cell wall degrading enzymes. Plant Cell Physiol.9: 369–396.Google Scholar
  166. Wiesner, J. 1892. Elementarstructur und Wachstum der lebendenSubstanz. Wien.Google Scholar
  167. Wirth, P. 1946. Membranwachstum während der Zellstreckung. Ber. Schweiz. Bot. Ges.56: 175–207.Google Scholar
  168. Wong, Y.S., G.B. Fincher andG.A. MacLachlan 1977. Kinetic properties and substrate specificities of two cellulases from auxin-treated pea epicotyls. J. Biol. Chem.252: 1402–1407.PubMedGoogle Scholar
  169. Yamagata, Y. andY. Masuda. 1975. Comparative studies on auxin and fusicoccin actions on plant growth. Plant Cell Physiol.16: 41–52.Google Scholar
  170. —,R. Yamamoto andY. Masuda. 1974. Auxin and hydrogen ion actions on light-grown pea epicotyl segments. II. Effect of hydrogen ions on extension of the isolated epidermis. Plant Cell Physiol.15: 833–841.Google Scholar
  171. Yamamoto, R., S. Fujihara and Y. Masuda. 1974c. Measurement of stress-relaxation properties of plant cell walls.In Plant Growth Substances, 1973, pp. 798-805. Hirokawa Publ. Co.Google Scholar
  172. —,M. Inouhe andY. Masuda. 1988. Galactose inhibition of auxin-induced growth of mono- and dicotyledonous plants. Plant Physiol.86: 1223–1227.PubMedGoogle Scholar
  173. —,H. Kawamura andY. Masuda. 1974b. Stress relaxation properties of the cell wall of growing intact plants. Plant Cell Physiol.15: 1073–1082.Google Scholar
  174. —,K. Maki andY. Masuda. 1974a. Auxin and hydrogen ion actions on light-grown pea epicotyl segments. III. Effect of auxin and hydrogen ions on stress-relaxation properties. Plant Cell Physiol.15: 1027–1038.Google Scholar
  175. —, andY. Masuda. 1971. Stress-relaxation properties of the Avena coleoptile cell wall. Physiol. Plant.25: 330–335.CrossRefGoogle Scholar
  176. . 1984a. Galactose inhibitin of auxininduced cell elongation in oat coleoptile segments. Physiol. Plant.61: 321–326.CrossRefGoogle Scholar
  177. Yamamoto, R. and Y. Masuda. 1984b. Auxin-induced modifications of cell wall polysaccharides in oat coleoptile segments. Effect of galactose.In W.M. Dugger and S. Bartnicki-Garcia, ed., Structure, Function, and Biosynthesis of Plant Cell Walls, pp. 284–301, Amer. Soc. Plant Physiol. Rookville.Google Scholar
  178. —, andD.J. Nevins. 1978. Structural studies on the β-glucan of the Avena coleoptile cell-wall. Carbohydr. Res.67: 275–280.CrossRefGoogle Scholar
  179. 1981. Coleoptile growth-inducing capacities of exo-β-(1→3)-glucanases from fungi. Physiol. Plant.51: 118–122.CrossRefGoogle Scholar
  180. —,N. Sakurai andY. Masuda. 1981. Inhibition of auxin-induced cell elongation by galactose. Physiol. Plant.53: 543–547.CrossRefGoogle Scholar
  181. —,K. Shinozaki andY. Masuda. 1970. Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol.11: 947–956.Google Scholar
  182. Yoda, S. andJ. Ashida. 1958. Effect of gibberellin on the extensibility of the pea stem. Nature182: 879–880.CrossRefGoogle Scholar
  183. . 1960. Effects of gibberellin and auxin on the extensibility of the pea stem. Plant Cell Physiol.1: 99–105.Google Scholar
  184. York, W.S., A.G. Darvill andP. Albersheim. 1984. Inhibition of 2, 4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol.75: 295–297.PubMedCrossRefGoogle Scholar
  185. Zarra, I. andY. Masuda. 1979. Growth and cell wall changes in rice coleoptiles growing under different conditions. II. Auxininduced growth in coleoptile segments. Plant Cell Physiol.20: 1125–1133.Google Scholar

Copyright information

© The Botanical Society of Japan 1990

Authors and Affiliations

  • Yoshio Masuda
    • 1
  1. 1.Department of Biology, Faculty of ScienceOsaka City UniversityOsaka

Personalised recommendations