The botanical magazine = Shokubutsu-gaku-zasshi

, Volume 98, Issue 4, pp 393–411 | Cite as

An investigation for the occurrence of C4 photosynthesis in the Cyperaceae from Australia

  • Tomoshiro Takeda
  • Osamu Ueno
  • Muneaki Samejima
  • Takeshi Ohtani
Article

Abstract

Two hundred and twenty species of 38 genera in the Cyperaceae from Australia were examined for the possible occurrence of the C4 photosynthesis and the anatomical features of leaves and culms. The Kranz type of anatomy and the carbon isotope ratios typical of C4 plants were found in 84 species in the following six genera of four tribes belonging to subfamily Cyperoideae:Bulbostylis, Crosslandia, andFimbristylis (Fimbristylideae);Lipocarpha (Lipocarpheae);Cyperus (Cypereae);Rhynchospora (Rhynchosporeae). The anatomical observation revealed that the C4 species possessed any one of the three Kranz anatomical types found by previous investigators. It was suggested that in the Cyperaceae the C4 syndrome evolved independently within several taxa of the subfamily.

The relative distribution of C3 and C4 species of the Cyperaceae in Australia was investigated by use of floristic data. It was recognized that the C4 species dominated in the northern part of the continent which was characterized by tropical and subtropical savannas and hot dry areas with summer rainfall, and the C3 species in the southern part, which contained temperate areas and mediterranean climatic areas with winter rainfall.

Key words

Australia C4 species Carbon isotope ratio Cyperaceae Geographical distribution Kranz anatomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle, N.C.W. 1981. The Vegetation of Australia. Gustav Fischer Verlag, Stuttgart.Google Scholar
  2. Beard, J.S. 1970. West Australian Plants, 2 ed. Surrey Beatty & Sons, Chipping Norton.Google Scholar
  3. Björkman, O. 1976. Adaptive and genetic aspects of C4 photosynthesis.In: R.H. Burris and C.C. Black, ed., CO2 Metabolism and Plant Productivity p. 287–309. Univ. Park Press, Baltimore.Google Scholar
  4. Black, C.C. 1971. Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. Advan. Ecol. Res.7: 87–114.CrossRefGoogle Scholar
  5. Black, J.M. 1978. Flora of South Australia, Part 1. D.J. Wollman Government Printer, South Australia.Google Scholar
  6. Brown, W.V. 1975. Variations in anatomy, associations, and origins of Kranz tissue. Amer. J. Bot.62: 395–402.CrossRefGoogle Scholar
  7. — 1977. The Kranz syndrome and its subtypes in grass systematics. Mem. Torr. Bot. Club23: 1–97.Google Scholar
  8. Burbidge, N.T. 1963. Dictionary of Australian Plant Genera. Angus and Robertson Ltd., Sydney.Google Scholar
  9. Carolin, R.C., S.W.L. Jacobs andM. Vesk. 1977. The ultrastructure of Kranz cells in the family Cyperaceae. Bot. Gaz.138: 413–419.CrossRefGoogle Scholar
  10. Chippendale, G.M. 1971. Check list of Northern Territory plants. Proc. Linn. Soc. New South Wales96: 207–267.Google Scholar
  11. Churchill, D.M., andA. de Corona. 1972. The Distribution of Victorian Plants. Dominion Press, North Blackburn.Google Scholar
  12. Ellis, R.P. 1977. Distribution of the Kranz syndrome in the southern African Eragrostoideae and Panicoideae according to bundle sheath anatomy and cytology. Agroplantae9: 73–110.Google Scholar
  13. Evans, L.T. 1971. Evolutionary, adaptive, and environmental aspects of the photosynthetic pathway.In: M.D. Hatchet al., ed., Photosynthesis and Photorespiration p. 130–136. Wiley-Interscience, New York.Google Scholar
  14. Hattersley, P.W. andL. Watson. 1976. C4 grasses: an anatomical criterion for distinguishing between NADP-malic enzyme species and PCK or NAD-malic enzyme species. Aust. J. Bot.24: 297–308.CrossRefGoogle Scholar
  15. — 1983. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia57: 113–128.CrossRefGoogle Scholar
  16. Hesla, B.I., L.L. Tieszen andS.K. Imbamba. 1982. A systematic survey of C3 and C4 p photosynthesis in the Cyperaceae of Kenya, East Africa. Photosynthetica16: 196–205.Google Scholar
  17. Hofstra, J.J., S. Aksornkoae, S. Atmowidjojo, J.F. Banaag, S.R.A. Sastrohoetomo andL.T.N. Thu. 1972. A study on the occurrence of plants with a low CO2 compensation point in different habitats in the tropics. Ann. Bogor.5: 143–157.Google Scholar
  18. Jacobs, S.W.L. andJ. Pickard. 1981. Plants of New South Wales. D. West Government Printer, Australia.Google Scholar
  19. Kern, J.H. 1974. Cyperaceae. Flora Malesiana I.7: 435–753.Google Scholar
  20. Koyama, T. 1961. Classification of the family Cyperaceae (1). J. Fac. Sci. Univ. Tokyo III.8: 37–148.Google Scholar
  21. — 1967. The systematic significance of leaf structure in the tribe Sclerieae (Cyperaceae). Mem. New York Bot. Gard.16: 46–70.Google Scholar
  22. — 1981. Cyperaceae.In: S. Kitamuraet al., ed, Coloured Illustrations of Herbaceous Plants of Japan. Vol. III, Revised ed. p. 210–303. Hoikusha, Osaka.Google Scholar
  23. Kükenthal, G. 1936. Cyperaceae-Scirpoideae-Cypereae. Pflanzenreich 101. IV.20: 1–671.Google Scholar
  24. Laetsch, W.M. 1974. The C4 syndrome: a structural analysis. Ann. Rev. Plant Physiol.25: 27–52.CrossRefGoogle Scholar
  25. Lerman, J.C. andJ. Raynal. 1972. La teneur en isotopes stables du carbone chez les Cypéracées: sa valeur taxonomique. Comp. Rend. Acad. Sci. Ser. D275: 1391–1394.Google Scholar
  26. Metcalfe, C.R. 1971. Anatomy of the Monocotyledons. Vol. 5 Cyperaceae. Clarendon, Oxford.Google Scholar
  27. Moore, P.D. 1982. Evolution of photosynthetic pathways in flowering plants. Nature295: 647–648.CrossRefGoogle Scholar
  28. O'Leary, M.H. 1981. Carbon isotope fractionation in plants. Phytochemistry20: 553–567.CrossRefGoogle Scholar
  29. Raghavendra, A.S. andV.S.R. Das. 1976. Distribution of the C4 decarboxylic acid pathway of photosynthesis in local monocotyledonous plants and its taxonomic significance. New Phytol.76: 301–305.CrossRefGoogle Scholar
  30. — and —. 1976 The occurrence of C4-photosynthesis: A supplementary list of C4 plants reported during late 1974-mid 1977. Photosynthetica12: 200–208.Google Scholar
  31. Raynal, J. 1973. Notes Cypérologiques: 19. Contribution a la classification de la sous-famille des Cyperoideae. Adansonia Ser. 2.13: 145–171.Google Scholar
  32. Samejima, M., A. Yamashita, T. Ohtani, K. Imai, I. Tanaka andE. Wada. 1982. Intraspecific difference of13C discrimination in rice plants. Jap. J. Crop Sci.51 (Extra 1): 203–204 (In Japanese).Google Scholar
  33. Smith, B.N. andM.J. Robbins. 1974. Evolution of C4 photosynthesis. An assesment based on13C/12C ratios and Kranz anatomy.In: M. Avron, ed., Proceeding of III International Congress on Photosynthesis, Vol. 1, p. 1579–1588. Elsevier Sci. Publ. Co., Amsterdam.Google Scholar
  34. —. 1975. Distribution of Kranz syndrome among Asteraceae. Amer. J. Bot.62: 541–545.CrossRefGoogle Scholar
  35. Takeda, T., O. Ueno andW. Agata. 1980. The occurrence of C4 species in the genusRhynchospora and its significance in Kranz anatomy of the Cyperaceae. Bot. Mag. Tokyo93: 55–65.CrossRefGoogle Scholar
  36. Teeri, J.A., L.G. Stowe andD.A. Livingstone. 1980. The distribution of C4 species of the Cyperaceae in North America in relation to climate. Oecologia47: 307–310.CrossRefGoogle Scholar
  37. Vogel, J., A. Flus andR.P. Ellis. 1978. The geographic distribution of Kranz grasses in South Africa. S. Afr. J. Sci.74: 209–215.Google Scholar
  38. Winter, K. 1981. C4 plants of high biomass in arid regions of Asia-Occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia48: 100–106.CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1985

Authors and Affiliations

  • Tomoshiro Takeda
    • 1
  • Osamu Ueno
    • 1
  • Muneaki Samejima
    • 2
  • Takeshi Ohtani
    • 3
  1. 1.Department of Agronomy, Faculty of AgricultureKyushu UniversityFukuoka
  2. 2.National Institute of Agrobiological ResourcesTsukuba, Ibaraki
  3. 3.Plant Research CenterKirin Brewery Corporation LTD.Tochigi

Personalised recommendations