Skip to main content
Log in

Diameter and amount of β-carotene determine the maximal phototropic bending angle ofPhycomyces sporangiophores

  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

Wild-type sporangiophores at stage IVb (final developmental stage after sporangium formation) ofPhycomyces show a pronounced positive phototropism to unilateral white light. We found that the maximal bending angle was larger in thin sporangiophores than in thick ones, and larger in the sporangiophores containing a small amount of β-carotene than in those containing a large amount of it. These phenomena probably occur because of the increase in length of intracellular light path or in the intracellular light-attenuation coefficient, as supported theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergman, K., A.P. Eslava andE. Cerdá-Olmedo. 1973. Mutants ofPhycomyces with abnormal phototropism. Mol. Gen. Genet.123: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Blaauw, A.H. 1914. Licht und Wachstum. I. Z. Bot.6: 641–703.

    Google Scholar 

  • Buder, J. 1918. Die Inversion des Phototropismus beiPhycomyces. Ber. Dtsch. Bot. Ges.36: 104–105.

    Google Scholar 

  • Castle, E.S. 1933. The physical basis of the positive phototropism ofPhycomyces. J. Gen. Physiol.17: 49–62.

    Article  CAS  Google Scholar 

  • Curry, G.M. andH.E. Gruen. 1957. Negative phototropism ofPhycomyces in the ultra-violet. Nature (London)179: 1028–1029.

    Article  CAS  Google Scholar 

  • . 1959. Action spectra for the positive and negative phototropism ofPhycomyces sporangiophores. Proc. Natl. Acad. Sci. USA45: 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Dennison, D.S. andR.P. Bozof. 1973. Phototropism and local adaptation inPhycomyces sporangiophores. J. Gen. Physiol.62: 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Dennison, S.D. andT.C. Vogelmann. 1989. ThePhycomyces lens: measurement of the sporangiophore intensity profile using a fiber optic microbe. Planta179: 1–10.

    Article  Google Scholar 

  • Eslava, A.P., M.I. Alvarez andE. Cerdá-Olmedo. 1974. Regulation of carotene biosynthesis inPhycomyces by vitamin A and β-ionone. Eur. J. Biochem.48: 617–623.

    Article  CAS  Google Scholar 

  • Fukshansky, L. andA.R. Steinhardt. 1987. Spatial factors inPhycomyces phototropism: Analysis of balanced responses. J. Theor. Biol.129: 301–323.

    Article  Google Scholar 

  • Galland, P. andE.D. Lipson. 1985. Modified action spectra of photogeotropic equilibrium inPhycomyces blakesleeanus mutants with defects in genesmadA, madB, madC and madH. Photochem. Photobiol.41: 331–335.

    PubMed  CAS  Google Scholar 

  • . 1987. Light physiology ofPhycomyces sporangiophores.In E. Cerdá-Olmedo and E.D. Lipson, ed.,Phycomyces, pp. 49–92. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Iino, M. andE. Schäfer. 1984. Phototropic response of the stage IPhycomyces sporangiophore to a pulse of blue light. Proc. Natl. Acad. Sci.81: 7103–7107.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L.F. 1960. The effect of polarized light on the growth of a transparent cell. A theoretical analysis. J. Gen. Physiol.43: 897–911.

    Article  PubMed  CAS  Google Scholar 

  • Jesaitis, A.J. 1974. Linear dichroism and orientation of thePhycomyces photopigment. J. Gen. Physiol.63: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Koga, K., T. Sato andT. Ootaki. 1984. Negative phototropism in the piloboloid mutants ofPhycomyces blakesleeanus Bgff. Planta162: 97–103.

    Article  Google Scholar 

  • Lipson, E.D., P. Galland andJ.A. Pollock. 1984. Blue light receptors inPhycomyces investigated by action spectroscopy, fluorescence lifetime spectroscopy, and two-dimensional electrophoresis.In H. Senger, ed., Blue light effects in biological systems, pp. 228–236. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • — 1983. Sensory information processing at the cellular level: The light response systems ofPhycomyces.In G.P. Scott and H.W. Wahner, ed., Radiation and cellular response, pp. 133–152. Iowa State University Press, Ames.

    Google Scholar 

  • Löser, G. andE. Schäfer. 1980. Phototropism inPhycomyces: A photochromic sensor pigment?In H. Senger, ed., The blue light syndrome, pp. 244–250. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • . 1984. Phototropism ofPhycomyces: Evidence for more than one photoreceptor.In H. Senger, ed., Blue light effects in biological systems, pp. 118–124. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Meistrich, M.L., R.L. Fork andJ. Matricon. 1970. Phototropism inPhycomyces as investigated by focused laser radiation. Science169: 370–371.

    PubMed  CAS  Google Scholar 

  • Ootaki, T., E.P. Fischer andP. Lockhart. 1974. Complementation between mutants ofPhycomyces with abnormal phototropism. Mol. Gen. Genet.131: 233–246.

    Article  Google Scholar 

  • —,K. Koga, S. Oosawa, R. Okazaki andT. Tsuru. 1988. Optical propertiess of piloboloid and β-carotene-overproducing mutants ofPhycomyces blakesleeanus responsible for their negative phototropism. Exp. Mycol.12: 313–324.

    Article  Google Scholar 

  • Reichardt, W. andD. Varjú. 1958. Eine inversionsphase der phototropischen Reaktion. (Experimente an dem PilzPhycomyces blakesleeanus). J. Phys. Chem. N.F.15: 297–320.

    CAS  Google Scholar 

  • Shropshire, W., Jr. 1962. The lens effect and phototropism ofPhycomyces. J. Gen. Physiol.45: 949–958.

    Article  Google Scholar 

  • — andJ.-F. Lafay. 1987. Sporangiophore and mycelial responses to stimuli other than light.In E. Cerdá-Olmedo and E.D. Lipson, ed.,Phycomyces, pp. 127–154. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Steinhardt A.R. andL. Fukshansky. 1985. Diffusion approximation for scattering in a cylinder: Optics of phototropism. J. Opt. Soc. Am. A2: 1725–1734.

    Article  Google Scholar 

  • . 1987. Geometrical optics approach to the intensity distribution in finite cylindrical media. Appl. Optics26: 3778–3789.

    Article  Google Scholar 

  • —,T. Popescu andL. Fukshansky. 1989. Is the dichroic photoreceptor forPhycomyces phototropism located at the plasma membrane or at the tonoplast? Photochem. Photobiol.49: 79–87.

    Google Scholar 

  • —,W., Jr. Shropshire andL. Fukshansky. 1987. Invariant properties of absorption profiles in sporangiophores ofPhycomyces blakesleeanus under balancing bilateral illumination. Photochem. Photobiol.45: 515–523.

    CAS  Google Scholar 

  • Sutter, R. 1975. Mutations affecting sexual development inPhycomyces blakesleeanus. Proc. Natl. Acad. Sci.72: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Tsuru, T., K. Koga, H. Aoyama andT. Ootaki. 1988. Optics inPhycomyces blakesleeanus sporangiophores relative to determination of phototropic orientation. Exp. Mycol.12: 302–312.

    Article  Google Scholar 

  • Varjú, D., L. Edgar andM. Delbrück. 1961. Interplay between the reactions to light and to gravity inPhycomyces. J. Gen. Physiol.45: 47–58.

    Article  PubMed  Google Scholar 

  • Zerby, C.D. 1963. A Monte Carlo calculation of the response of gamma-ray scintillation counters. Method. Comput. Physics1: 89–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ootaki, T., Koga, K., Ito, H. et al. Diameter and amount of β-carotene determine the maximal phototropic bending angle ofPhycomyces sporangiophores. Bot. Mag. Tokyo 104, 323–340 (1991). https://doi.org/10.1007/BF02488385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488385

Key words

Navigation