Skip to main content
Log in

Osmotic acclimation of the brackish water xanthophyceae,Vaucheria dichotoma (L.) MARTIUS: Inorganic ion composition and amino acids

  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

The salinity tolerance ofVaucheria dichotoma, a siphonous Xanthophycean alga was investigated. The alga survived an external osmotic potential range between 74 and 1, 176 mOsmol (ca. 2.5 and 40.0 ppt. (parts per thousand]). Turgor pressure was regulated in salinities ranging from 74 to 441 mOsmol. With further increase of the salinity, turgor pressure decreased from 153 to 9 mOsmol (0.44 to 0.08 MPa). At 441 mOsmol salinity the major intracellular ions were present in the following concentrations (mM/l cell water): K+, 145; Na+; 90; sulphate, 91; Cl, 91. Under the most severe salinity stress (1,176 mOsmol) the ionic concentration increased to (mM/l cell water): K+, 250; Na+, 75; sulphate, 35; Cl, 351. The content of amino acids: alanine (Ala), threonine (Thr and glutamic acid (Glu) was lower, nerver exceeding 5–11 mM, however; the concentrations were positively correlated with salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg, H. andL. Fries. 1976. On cultivation of the algaVaucheria dichotoma (Xanthophyceae) in axenic culture. Phycologia15: 133–141.

    Google Scholar 

  • Amino, S. andM. Tazawa. 1989. Dependence of tonoplast transport of amino acids on vacuolar pH inChara cells. Proc. Jap. Acad.65 (B): 34–37.

    CAS  Google Scholar 

  • Bisson, M.A. andJ. Gutknecht. 1975. Osmotic regulation in the marine algaCodium decorticatum. I. Regulation of turgor pressure by control of ionic composition. J. Membr. Biol.24: 183–200.

    Article  PubMed  CAS  Google Scholar 

  • . 1977. Osmotic regulation in the marine algaCodium decorticatum. II. Active chloride influx exerts negative feedback control on the turgor pressure. J. Membr. Biol.37, 85–98.

    Article  CAS  Google Scholar 

  • —. 1979. Osmotic adaptation in the marine algaGriffithsia monilis (Rhodophyceae): the role of ions and organic compounds. Austr. J. Plant Physiol.67: 523–538.

    Google Scholar 

  • Cram, W.J. 1986. Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrition supply.In U. Lüttge and M.G. Pitman, eds. Transport in Plants. II. Part A: Cells Encyclopedia of Plant Physiology, New Series, 2A pp. 284–316. Springer Verlag: Berlin, Heidelberg, New York.

    Google Scholar 

  • Christensen, T. 1952. Studies on the genusVaucheria. I. A list of finds from Denmark and England with notes on some submarine species. Bot. Tidsskr.49: 171–188.

    Google Scholar 

  • Christensen, T. 1956. Studies on the genusVaucheria. III. Remarks on some species from brackish water. Bot. Notiser109: Fasc 2.

  • — 1988. Salinity preference of twenty species ofVaucheria (Tribophyceae). J. mar. biol. Ass. U.K.68: 531–545.

    Article  Google Scholar 

  • Dickson, D.M.J. andG.O. Kirst. 1986. The role of betadimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation ofPlatymonas subcordiformis. Planta167: 536–543.

    Article  CAS  Google Scholar 

  • Edwards, D.M., R.H. Reed andW.D.P. Stewart. 1988. Osmoacclimation inEnteromorpha intestinalis: long-term effects of osmotic stress on organic solute accumulation. Mar. Biol.98: 467–476.

    Article  Google Scholar 

  • Ettl, H. 1978: Xanthophyceae.In Ettl, H., J. Gerloff and H. Heynig, eds. Süsswasserflora von Mitteleuropa. Band 4. Teil 1. Gustav Fischer Verlag, Stuttgart,

    Google Scholar 

  • Fries, L. 1963. On the cultivation of axenic red algae. Phys. Plant.16: 695 ff.

    Google Scholar 

  • Gerlach, E. andB. Deuticke. 1963. Eine einfache Methode zur Mikrobestimmung von Phosphat in der Papierchromatographie. Biochem. Z.337: 447–479.

    Google Scholar 

  • Gutknecht, J. 1968. Salt transport inValonia: Inhibition of potassium uptake by small hydrostatic pressures. Science160: 68–70.

    PubMed  CAS  Google Scholar 

  • —,D.F. Hastings andM.A. Bisson. 1978.In G. Giebisch, D.C. Tosteson and H.H. Ussing eds. Membrane transport in biology, Vol. 3, pp. 125–174. Springer Verlag, New York.

    Google Scholar 

  • Hoek, Chr. van den. 1984. Algen. Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Kauss, H., 1978. Osmotic regulation in algae.In Progress in Phytochemistry. Vol. 5. Reinholdet al. eds. Pergamon Press.

  • Kremer, B.P. 1980. Taxonomic implication of algal photoassimilate patterns. Br. phycol. J.15: 399–409.

    Google Scholar 

  • Kirst, G.O. andM.A. Bisson. 1979. Regulation of turgor pressure in marine algae: Ions and low-molecular-weight organic compounds. Austr. J. Plant Physiol.6: 539–556.

    CAS  Google Scholar 

  • — 1990. Salinity tolerance of eucaryotic marine algae. Ann. Rev. Plant Phys. Plant Mol. Biol.41: 21–53.

    Article  CAS  Google Scholar 

  • Kolbe, R.W. 1927. Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Die Kieselalgen des Sperenberger Salzgebietes. Pflanzenforsch Jena (Kolwitz). H. 7.

  • Krieg, H., T. Eller andL. Kies. 1988. Verbreitung und Ökologie der Vaucheria-Arten (Tribophyceae) des Elbe-Ästuars und der angrenzenden Küste. Helgol. Meeres.42: 613–636.

    Article  Google Scholar 

  • Lindholm, T., O. Rönnberg andT. Östman. 1989. Husövikenen flada i Ålands skärgård. Svensk Bot. Tidsk.83: 143–147.

    Google Scholar 

  • Ortlam, D. 1984. Die geohydrologischen Verhältnisse im Hollerland (Bremen). Abh. Naturw. Verein Bremen40: 155–164.

    Google Scholar 

  • Ott, D.W. andR.M. Brown Jr. 1972. Light and electron microscopical observations on mitosis inVaucheria litorea HOFMAN ex C. AGARD. Br. Phycol. J.7: 361–374.

    Google Scholar 

  • . 1974a. Developmental cytology of the genusVaucheria. I. Organisation of the vegetative filament. Br. Phycol. J.9: 111–126.

    Google Scholar 

  • . 1974b. Developmental cytology of the genus vaucheria. II. Sporogenesis inVaucheria fontinalis (L.) CHRISTENSEN. Br. Physol. J.9: 333–351.

    Google Scholar 

  • Reed, R.H. 1983. Measurement and osmotic significance of Bdimethylsulphonio-propionate in marine macroalgae. Mar. Biol. Letters4: 173–181.

    CAS  Google Scholar 

  • — 1984. The effects of extreme hyposaline stress uponPolysiphonia lanosa (L.) Tandy from marine and estuarine sites. J. Exp. Mar. Biol. Ecol.76: 131–141.

    Article  Google Scholar 

  • Reinhold, L. andA. Kaplan. 1984. Membrane transport of sugars and amino acids. Ann. Rev. Plant Physiol.35: 45–83.

    CAS  Google Scholar 

  • Rieth, A. 1954. Beobachtungen zur Entwicklungsgeschichte einerVaucheria der Sektion Woroninia. Flora142: 156–182.

    Google Scholar 

  • — 1955. Zur Kenntnis halophilerVaucherien Flora143: 596–604.

    Google Scholar 

  • — 1961. Eine diözische Rasse und experimentelle Kreuzung beiVaucheria dichotoma (L.) AGH. Flora150: 501–502.

    Google Scholar 

  • — 1968. Beiträge zur Kenntnis der Vaucheriaceen XIV. Über das Auftreten von Sexualorganen an Vernarbungsmembranen im Thallusinneren. Die Kulturpflanze26: 103–126.

    Google Scholar 

  • — 1969. Beobachtungen über Polarität Polarität und Regeneration an,Vaucheria. Die Kulturpflanze27: 141–161.

    Article  Google Scholar 

  • — 1978. Beiträge zur Kenntnis der Vaucheriaceae. XXI. Monözie and Diözie im Formenkreis vonVaucheria dichotoma (L.) AGARDH und die ArtVaucheria starmachii KADLUBOWSKA. Arch. Prot. Bd.120: 409–419.

    Google Scholar 

  • — 1980. Xanthophyceae.In Ettl, H., J. Gerloff andH. Heynig, eds. pp. 147. Süsswasserflora von Mitteleuropa. Band 4. Teil 2. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Sakano, K. andM. Tazawa. 1984. Intracellular distribution of free amino acids between the vacuolar and extravacuolar compartments in internodal cells ofChara australis. Plant Cell Physiol.25: 1477–1486.

    CAS  Google Scholar 

  • . 1985. Metabolic conversion of amino acids loaded in the vauole ofChara australis internodal cells. Plant Physiol.78: 673–667.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, F. 1937. Die Makrophytenvegetation ostholsteinischer Seen und Teiche. Arch. Hydrobiol. Suppl. VI: 431–478.

    Google Scholar 

  • Simons, J. 1974.Vaucheria compacta: A euryhaline estuarine algal species. Acta Bot. Neer.23(5)–(6): 613–626.

    Google Scholar 

  • Weast, R.D. ed. 1971. CRC Handbook of chemistry and physics.52. The Chemical Rubber Comp., Cleveland.

    Google Scholar 

  • Weissenböck, J. 1939. Membranregeneration plasmolysierterVaucheria-Protoplasten. Protoplasma32: 44–91.

    Article  Google Scholar 

  • Young, A.J., J.C. Collins andG. Russel. 1987. Solute regulation in the euryhaline marine algaEnteromorpha prolifera (O.F. Müll) J. Ag. J. Exp. Bot.38: 1298–1308.

    CAS  Google Scholar 

  • Zimmermann, U. 1978. Physics of turgor and osmoregulation. Ann. Rev. Plant Physiol.29: 121–148.

    Article  CAS  Google Scholar 

  • Zmiri, A. andB.-Z. Ginzburg. 1983. Extracellular space and cellular sodium content in pellets ofDunaliella parva (Dead sea, 75). Plant Science Letters30: 211–218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henschel, D., Kataoka, H. & Kirst, G.O. Osmotic acclimation of the brackish water xanthophyceae,Vaucheria dichotoma (L.) MARTIUS: Inorganic ion composition and amino acids. Bot. Mag. Tokyo 104, 283–295 (1991). https://doi.org/10.1007/BF02488382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488382

Key words

Navigation