Advertisement

The botanical magazine = Shokubutsu-gaku-zasshi

, Volume 102, Issue 3, pp 369–380 | Cite as

Developmental anatomy of the shoot apical cell, rhizophore and root ofSelaginella uncinata

  • Ryoko Imaichi
  • Masahiro Kato
Article

Abstract

The developmental anatomy of the shoot apex, rhizophore and root ofSelaginella uncinata was examined by the semi-thin section method. The shoot apex has a single, lens-shaped apical cell with two cutting faces. Rhizophore primordia are initiated exogenously at the branching point of the second youngest lateral shoot. The rhizophore apex has a tetrahedral apical cell with three cutting faces. A pair of root primordia is initiated endogenously from inner cells of the rhizophore apex, after the rhizophore apical cell becomes unidentifiable losing its activity, and subsequently a root cap is formed from the distal face of the root apical cell. During the course of successive root branching the apical cell in an original root apical meristem becomes unidentifiable and then a new apical cell is initiated in each of the bifurcated root apical meristems. The root branching mode seems to be equivalent to the described dichotomous branching mode of fern shoots. Our results demonstrate a distinct morphogenetical difference between the rhizophore and the root, and confirm the exogenous origin of the rhizophore, as described for other species ofSelaginella. This evidence indicates that the rhizophore is not an aerial root but a leafless, root-producing axial organ.

Key words

apical cell endogenous origin rhizophore root Selaginella shoot apex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bierhorst, D.W. 1971. Morphology of Vascular Plants. Macmillan, New York.Google Scholar
  2. Bruchmann, H. 1905. Von den Wurzelträgern derSelaginella Kraussiana A. Br. Flora95: 150–166.Google Scholar
  3. Cusick, F. 1954. Experimental and analytical studies of pteridophytes XXV. Morphogenesis inSelaginella Willdenovii Baker II. Angle-meristems and angle-shoots. Ann. Bot. N.S.18: 171–181.Google Scholar
  4. Dengler, N.G. 1983. The developmental basis of anisophylly inSelaginella martensii. I. Initiation and morphology of growth. Amer. J. Bot.70: 181–192.CrossRefGoogle Scholar
  5. Foster, A.S. andE.M. Gifford, Jr. 1974. Comparative Morphology of Vascular Plants. 2nd ed. Freeman and Company, Fan Francisco.Google Scholar
  6. Grenville, D.J. andR.L. Peterson. 1981. Structure of aerial and subterranean roots ofSelaginella kraussiana A. Br. Bot. Gaz.142: 73–81.CrossRefGoogle Scholar
  7. Guttenberg, H. von. 1966. Histogenese der Pteridophyten. Handbuch der Pflanzenanatomie. Band 7, Teil 2. Gebrüder Borntraeger, Berlin-Nikolassee.Google Scholar
  8. Hagemann, W. 1980. Über den Verzweigungsorgang beiPsilotum undSelaginella mit Anmerkungen zum Begriff der Dichotomie. Pl. Syst. Evol.133: 181–197.CrossRefGoogle Scholar
  9. — andU. Schulz. 1978. Wedelanlegung und Rhizomverzweigung bei einigen Gleicheniaceen. Bot. Jahrb. Syst.99: 380–399.Google Scholar
  10. Jacobs, W.P. 1988. Development of procambium, xylem, and phloem in the shoot apex ofSelaginella. Bot Gaz.149: 64–70.CrossRefGoogle Scholar
  11. Jernstedt, J.A. andM.A. Mansfield. 1985. Two-dimensional gel electrophoresis of polypeptides from stems, roots, leaves, and rhizophores ofSelaginella kraussiana. Bot. Gaz.146: 460–465.CrossRefGoogle Scholar
  12. Kato, M. 1983. The classification of major groups of pteridophytes. J. Fac. Sci. Univ. Tokyo III,13: 263–283.Google Scholar
  13. Mueller, R.J. 1982. Shoot morphology of the climbing fernLygodium (Schizaeaceae): general organography, leaf initiation and branching. Bot. Gaz.143: 319–330.CrossRefGoogle Scholar
  14. Nägeli, C. andH. Leitgeb. 1868. Entstehung und Wachstum der Wurzeln. Beitr. Wiss. Bot.4: 124–158.Google Scholar
  15. Ogura, Y. 1972. Comparative Anatomy of Vegetative Organs of the Pteridophytes. Gebrüder Borntraeger, Berlin.Google Scholar
  16. Popham, R.A. 1951. Principal types of vegetative shoot apex organization in vascular plants. Ohio J. Sci.51: 249–270.Google Scholar
  17. Siegert, A. 1974. Die Verzweigung der Selaginellen unter Berücksichtigung der Keimungsgeschichte. Beitr. Biol. Pfl.50: 21–112.Google Scholar
  18. Webster, T.R. 1969. An investigation of angle-meristem development in excised stem segments ofSelaginella martensii. Can. J. Bot.47: 717–722.Google Scholar
  19. — andR. Jagels. 1977. Morphology and development of aerial roots ofSelaginella martensii grown in moist containers. Can. J. Bot.55: 2149–2158.Google Scholar
  20. — andT.A. Steeves. 1963. Morphology and development of the root ofSelaginella densa Rydb. Phytomorphology13: 367–376.Google Scholar
  21. ——. 1964. Developmental morphology of the root ofSelaginella kraussiana A. Br. andSelaginella wallacei Hieron. Can. J. Bot.42: 1665–1676.Google Scholar
  22. ——. 1967. Developmental morphology of the root ofSelaginella martensii Spring. Can. J. Bot.45: 395–404.Google Scholar
  23. Williams, S. 1931. An analysis of the vegetative organs ofSelaginella grandii Moore, together with some observations on abnormalities and experimental results. Trans. Roy. Soc. Edinburgh57: 1–21.Google Scholar
  24. Wochok, Z.S. andD.L. Clayton. 1978. Comparison of determined and undetermined meristems ofSelaginella willdenovii Baker. Cytobios21: 103–111.PubMedGoogle Scholar
  25. — andI.M. Sussex. 1974. Morphogenesis inSelaginella II. Auxin transport in the root (rhizophore). Plant Physiol.53: 738–741.PubMedCrossRefGoogle Scholar
  26. —. 1975. Morphogenesis inSelaginella III. Meristem determination and cell differentiation. Develop. Biol.47: 376–383.PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan 1989

Authors and Affiliations

  • Ryoko Imaichi
    • 1
  • Masahiro Kato
    • 2
  1. 1.Faculty of AgricultureTamagawa UniversityTokyo
  2. 2.Botanical Gardens, Faculty of ScienceUniversity of TokyoTokyo

Personalised recommendations