Skip to main content

Automorphisms of Ω

Abstract

Let ℰ be a topos, with subobject classifier Ω. We show that automorphisms of Ω in ℰ are in 1-1 correspondence with closed boolean subtoposes of ℰ, the group operation corresponding to symmetric difference of subtoposes. This helps to explain an earlier result of D. Higgs, which implied that aut (Ω) was an elementary abelian group of exponent 2. We also use this result to give an explicit description of aut Ω when ℰ is a spatial topos or a topos of presheaves.

This is a preview of subscription content, access via your institution.

References

  1. A. Grothendieck andJ. L. Verdier, Topos (SGA 4, exposé IV).Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. vol. 269 (Springer-Verlag, 1972), pp. 299–519.

    MATH  MathSciNet  Google Scholar 

  2. P. T. Johnstone,Topos theory. Academic Press 1977.

  3. S. Mac Lane, Sets, topoi and internal logic in categories.Proceedings of ASL Logic Colloquium, Bristol 1973 (North-Holland, 1975), pp. 119–134.

  4. H. Volger, Ultrafilters, ultrapowers and finiteness in a topos. J. Pure and Applied Algebra 6 (1975), pp. 345–356.

    MATH  MathSciNet  Article  Google Scholar 

  5. G. C. Wraith, Lectures on elementary topoi,Model theory and topoi, Lecture Notes in Math. vol. 445 (Springer-Verlag, 1975), pp. 114–206.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnstone, P.T. Automorphisms of Ω. Algebra Universalis 9, 1–7 (1979). https://doi.org/10.1007/BF02488012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488012

Keywords

  • Boolean Algebra
  • Distributive Lattice
  • Full Subcategory
  • Algebra UNIV
  • Symmetric Difference