Acta Mechanica Sinica

, Volume 13, Issue 2, pp 143–152 | Cite as

Deformation localization and shear band fracture in strong anisotropy sheet tension

  • Hu Ping
  • Li Dayong
  • Cui Bo
Article

Abstract

The tensile deformation localization and the shear band fracture behaviors of sheet metals with strong anisotropy are numerically simulated by using Updating Lagrange finite element method, Quasi-flow plastic constitutive theory[1] and B-L planar anisotropy yield criterion[2]. Simulated results are compared with experimental ones. Very good consistence is obtained between numerical and experimental results. The relationship between the anisotropy coefficientR and the shear band angle θ is found.

Key Words

deformation localization and shear band fracture planar anisotropy sheet metal tension finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hu P, Lian J, Li YX.ACTA Mechanica Sinica, 1994, 26(3): 275Google Scholar
  2. 2.
    Barlat F and Lian J.Int J Plasticity, 1989, 5: 51CrossRefGoogle Scholar
  3. 3.
    Hosford WF.J Appl Mech, 1972, 39: 607Google Scholar
  4. 4.
    Bassani JL.Int J Mech Sci, 1977, 19: 651CrossRefGoogle Scholar
  5. 5.
    Hill R.Math Proc Camb Phil Soc, 1979, 85: 179MATHCrossRefGoogle Scholar
  6. 6.
    Gotoh M.Int J Mech Sci, 1977, 19: 505MATHCrossRefGoogle Scholar
  7. 7.
    Logon RW and Fosford WF.Int J Mech Sci, 1980, 22: 419CrossRefGoogle Scholar
  8. 8.
    Jones SE and Gillis PP.Metall Trans, 1984, 15A: 129Google Scholar
  9. 9.
    Budianski B. Anisotropic plasticity of plane-isotropic sheets. In: Dvorak GJ and Shield RT eds. Mech Mat Behavior. Amsterdam: Elsevier Science Publishers, 1984, 15Google Scholar
  10. 10.
    Barlat F.Mat Sci Engng, 1987, 91: 55CrossRefGoogle Scholar
  11. 11.
    Hershey AV.J Appl Mech, 1954, 76: 241Google Scholar
  12. 12.
    Barlat F, Lege DJ and Brem JC.Int J Plasticity, 1991, 7: 693CrossRefGoogle Scholar
  13. 13.
    Liu YC.Metall Trans, 1983, 14A: 1199Google Scholar
  14. 14.
    Tirosh J.J Mat Proc Tech, 1992, 32: 355CrossRefGoogle Scholar
  15. 15.
    Raghavan KS and Wagoner RH.Int J Plasticity, 1987, 3: 33CrossRefGoogle Scholar
  16. 16.
    Vial C and Hosford WF.Int J Mech Sci, 1983, 25(2): 899CrossRefGoogle Scholar
  17. 17.
    Yang DY and Kim YJ.Int J Mech Sci, 1986, 28(12): 825MATHCrossRefGoogle Scholar
  18. 18.
    Neal KW and Chater E.Int J Mech Sci, 1980, 22: 563CrossRefGoogle Scholar
  19. 19.
    Narasimhan K and Wagoner RH.Metall Trans, 1991, 22A: 2655Google Scholar
  20. 20.
    McMeeking RM and Rice JR.Int J Solids Struct, 1975, 11: 601MATHCrossRefGoogle Scholar
  21. 21.
    Lian J and Baudelet B.Mat Sci Engng, 1987, 86: 137CrossRefGoogle Scholar
  22. 22.
    Nagtegaal JC, Parks DM and Rice JR.Comp Meth Appl Mech Engng, 1974, 4: 153MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hill R.J Mech Phys Solids, 1958, 6: 236MATHCrossRefGoogle Scholar
  24. 24.
    Tvergaard V.J Mech Phys Solids, 1976, 24: 291CrossRefGoogle Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1997

Authors and Affiliations

  • Hu Ping
    • 1
  • Li Dayong
    • 1
  • Cui Bo
    • 2
  1. 1.Department of Applied MechanicsJilin University of TechnologyChangchunChina
  2. 2.Department of Metal Material EngineeringJilin University of TechnologyChangchunChina

Personalised recommendations