Acta Mechanica Sinica

, Volume 14, Issue 3, pp 239–247 | Cite as

Simulation of fabric drape using a thin plate element with finite rotation

  • Chen Mingxiang
  • Sun Qingping
  • Yuen Ming-fai


The draping behavior of fabric is simulated by using four node quadrilateral thin plate elements with finite rotation. The finite element formulation is based on the total Lagrangian approach. An exact representation of finite rotation is introduced. The strain energy function accounting for the material symmetry is obtained by the tensor representation theory. To avoid shear locking, the assumed strain technique for transverse shear is adopted. The conjugate gradient method with a proposed line search algorithm is employed to minimize energy and reach the final shape of fabric. The draping behavior of a rectangular piece of fabric over a rectangular table is simulated.

Key Words

nonlinear finite element cloth draping flexible thin plate finite rotation tensor function representation theory conjugate gradient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terzepoules D, Platt J, Barr A, Fleischer K. Elastically deformable models. Computer Graph (Proc SIGGRAPH). 1987, 21(4): 205–214CrossRefGoogle Scholar
  2. 2.
    Collier JR, Collier BJ, O'Toole G et al. Drape prediction by means of finite element analysis.J Text Inst, 1991, 82(1): 96–107Google Scholar
  3. 3.
    Zhao YF, Wong TN, Tan ST, et al. A model for simulating flexible surfaces of cloth objects.Computer & Structure. 1997, 63(1): 133–147MATHCrossRefGoogle Scholar
  4. 4.
    Kang TJ, Yu WR. Drape simulation of women fabric by using the finite-element method.J Text Inst, 1995, (4): 635–648CrossRefGoogle Scholar
  5. 5.
    Parisch H. An investigation of a finite rotation four node assumed strain shell element.Int J Numer Methods Eng, 1991, 31(1): 127–150MATHCrossRefGoogle Scholar
  6. 6.
    Zheng QS. Theory of representations for tensor functions: A unified invariant approach to constitutive equations.Appl Mech Rev, 1995, 47(11): 545–587CrossRefGoogle Scholar
  7. 7.
    Argyris JH. An excursion into large rotations.Comput Methods Appl Mech Eng, 1982, 32: 85–155MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Neumann FE. Vorlesungen über die Theorie der Elastizität der festen Körper, Leipzig, 1885Google Scholar
  9. 9.
    Zheng QS, Betten J. The formulation of constitutive equations for fiber-reinforced composites in plane problems: Part II.Archive Appl Mech, 1995, 65(2): 161–177MATHCrossRefGoogle Scholar
  10. 10.
    Dvorkin EN, Bathe KJ. A continuum mechanics based four node shell element for general nonlinear analysis,Eng Comput, 1984, (1): 77–88Google Scholar
  11. 11.
    Bazaraa MS, Sherali HD, Shetty CM. Nonlinear Programming: Theory and Algorithms, 2nd edition. New York: John Wiley & Sons, Inc, 1993MATHGoogle Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1998

Authors and Affiliations

  • Chen Mingxiang
    • 1
  • Sun Qingping
    • 1
  • Yuen Ming-fai
    • 1
  1. 1.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyKowloonHong Kong, China

Personalised recommendations