Acta Mechanica Sinica

, Volume 14, Issue 3, pp 239–247

# Simulation of fabric drape using a thin plate element with finite rotation

• Chen Mingxiang
• Sun Qingping
• Yuen Ming-fai
Article

## Abstract

The draping behavior of fabric is simulated by using four node quadrilateral thin plate elements with finite rotation. The finite element formulation is based on the total Lagrangian approach. An exact representation of finite rotation is introduced. The strain energy function accounting for the material symmetry is obtained by the tensor representation theory. To avoid shear locking, the assumed strain technique for transverse shear is adopted. The conjugate gradient method with a proposed line search algorithm is employed to minimize energy and reach the final shape of fabric. The draping behavior of a rectangular piece of fabric over a rectangular table is simulated.

## Key Words

nonlinear finite element cloth draping flexible thin plate finite rotation tensor function representation theory conjugate gradient

## References

1. 1.
Terzepoules D, Platt J, Barr A, Fleischer K. Elastically deformable models. Computer Graph (Proc SIGGRAPH). 1987, 21(4): 205–214
2. 2.
Collier JR, Collier BJ, O'Toole G et al. Drape prediction by means of finite element analysis.J Text Inst, 1991, 82(1): 96–107Google Scholar
3. 3.
Zhao YF, Wong TN, Tan ST, et al. A model for simulating flexible surfaces of cloth objects.Computer & Structure. 1997, 63(1): 133–147
4. 4.
Kang TJ, Yu WR. Drape simulation of women fabric by using the finite-element method.J Text Inst, 1995, (4): 635–648
5. 5.
Parisch H. An investigation of a finite rotation four node assumed strain shell element.Int J Numer Methods Eng, 1991, 31(1): 127–150
6. 6.
Zheng QS. Theory of representations for tensor functions: A unified invariant approach to constitutive equations.Appl Mech Rev, 1995, 47(11): 545–587
7. 7.
Argyris JH. An excursion into large rotations.Comput Methods Appl Mech Eng, 1982, 32: 85–155
8. 8.
Neumann FE. Vorlesungen über die Theorie der Elastizität der festen Körper, Leipzig, 1885Google Scholar
9. 9.
Zheng QS, Betten J. The formulation of constitutive equations for fiber-reinforced composites in plane problems: Part II.Archive Appl Mech, 1995, 65(2): 161–177
10. 10.
Dvorkin EN, Bathe KJ. A continuum mechanics based four node shell element for general nonlinear analysis,Eng Comput, 1984, (1): 77–88Google Scholar
11. 11.
Bazaraa MS, Sherali HD, Shetty CM. Nonlinear Programming: Theory and Algorithms, 2nd edition. New York: John Wiley & Sons, Inc, 1993

© Chinese Society of Theoretical and Applied Mechanics 1998

## Authors and Affiliations

• Chen Mingxiang
• 1
• Sun Qingping
• 1
• Yuen Ming-fai
• 1
1. 1.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyKowloonHong Kong, China