Advertisement

Acta Mechanica Sinica

, Volume 13, Issue 3, pp 210–217 | Cite as

Numerical simulation of the flow with contact lines

  • Lu Zuowei
  • Cui Guixiang
  • Zhang Zhaoshun
Article

Abstract

The paper proposes a physical model for the motion of the contact line and the gas-liquid interface. The local motion of the contact line at the solid wall is assumed and the interface between gas and liquid is traced by a level function. The numerically. The motion of the water column in a vertical pipe is computed and the results are in good agreement with experimental data.

Key Words

numerical simulation motion of contact line interface tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sheng P, Zhou MY. Immiscible-fluid displacement: Contact-line dynamics and the velocity-dependent capillary pressure.Physical Review A, 1992, 45: 5694CrossRefGoogle Scholar
  2. 2.
    Seden RV, Budziak CJ, Neumann AW. Dynamics contact angles at low velocities.Journal of Colloid and Interface Science, 1993, 159: 392–399CrossRefGoogle Scholar
  3. 3.
    Haley PJ, Miksis MJ. The effect of the contact line on droplet spreading.JFM, 1991, 223: 57–81MATHMathSciNetGoogle Scholar
  4. 4.
    Gennes PGD, Hua X, Levinson P. Dynamics of Wetting: local contact angles.JFM, 1990, 212: 55–63MATHGoogle Scholar
  5. 5.
    Tome MF, Sean M. GENSMAC: A Computational Marker and Cell Method for Free Surface Flows in General Domain.J Computational Phys. 1994, 110: 171MATHCrossRefGoogle Scholar
  6. 6.
    Hirt CW, Nichols BD. Volume of Fluid Method for the Dynamics of Free Boundaries.J Computational Phys, 1981, 39: 201MATHCrossRefGoogle Scholar
  7. 7.
    Dendy JE, Layman JM. Multigrid and ICCG for Problems with Interfaces. New York: Academic Press, 1981. 247Google Scholar
  8. 8.
    Sethian JA. Curvature and the evolution of fronts.Commun Math Phys, 1983, 101: 487–499MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sussan M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow.Journal Computational Physics 1994, 114: 146–159CrossRefGoogle Scholar
  10. 10.
    De Gennes PG. Wetting: Statics and Dynamics.Review of Modern Physics, 1985, 57: 827CrossRefGoogle Scholar
  11. 11.
    Huh C, Scriven LE. Hydrodynamic Model of Steady Movement of a Solid Liquid/Fluid contact Line.J Colloid and Interface Science, 1971, 35: 85CrossRefGoogle Scholar
  12. 12.
    Lu ZW, Cui GX, Zhang ZS. Numerical simulation of the gas bubble motion in liquid.Chinese Journal of Computational Mechanics, 1997, 14: 125–133Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 1997

Authors and Affiliations

  • Lu Zuowei
    • 1
  • Cui Guixiang
    • 1
  • Zhang Zhaoshun
    • 1
  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations