Acta Mechanica Sinica

, Volume 16, Issue 4, pp 309–324 | Cite as

Effect of microstructure on the hardening and softening behavIors of polycrystalline shape memory alloys Part I: Micromechanics constitutive modeling

  • Song Guquan
  • Sun Qingping
  • Hwang Kehchih


The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy (SMA) are studied by a microstructure-based constitutive model developed in this paper. The model is established on the following basis: (1) the transformation conditions of the unconstrained single crystal SMA microdomain (to be distinguished from the bulk single crystal), which serve as the local criterion for the derivation of overall transformation yield conditions of the polycrystal; (2) the micro- to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived; (3) the quantitative incorporation of three microstructure factors (i.e., nucleation, growth and orientation distribution of martensite) into the modeling. These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quantitatively modeled. It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response, the latter will lead to the localization and propagation of transformation bands in TiNi SMA.

Key words

phase transformation microstructure hardening and softening polycrystalline material shape momory alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delaey L, Krishnan RV, Tas H, et al. Review: Thermoelasticity, pseudoelasticity and memory effect associated with martensitic transformations.J Mat Sci, 1974, 9: 1521–1555CrossRefGoogle Scholar
  2. 2.
    Otsuka K, Shimizu K. Morphology and crystallography of thermoelastic Cu−Al−Ni martensite analyzed by the phenomenological theory.Trans Japan Inst Metals, 1974, 15: 103–108Google Scholar
  3. 3.
    Otsuka K, Shimizu K. Stress-induced martensitic transformations and martensite-to martensite transformations. In: Aaronson HI, et al eds. Proceedings of an International Conference on Solid-Solid Phase Transformation, Warrendale, PA, 1981. AIME, 1982. 1267–1286Google Scholar
  4. 4.
    Wayman CM. Martensitic transformation: An overview. In: Aaronson HI et al eds. Proceedings of an International Conference on Solid-Solid Phase Transformation, Warrendale, PA, 1981. AIME, 1982. 1119–1144Google Scholar
  5. 5.
    Funakubo H. Shape Memory Alloys. New York: Gordon and Breach Science Publishers, 1987Google Scholar
  6. 6.
    Olson GB, Owen NS, Martensite, A Tribute to Morris Cohen. ASM International, 1992Google Scholar
  7. 7.
    Christian JW. Crystallographic theories, interface structures, and transformation mechanisms.Metall and Mater Trans, 1995, 25A:1821–1839Google Scholar
  8. 8.
    Fischer FD, Sun QP, Tanaka K. Transformation-induced plasticity (TRIP).Appl Mech Rev, 1996, 49: 317–364CrossRefGoogle Scholar
  9. 9.
    Falk F. Model free energy, mechanics and thermodynamics of shape memory alloys.Acta Metall, 1980, 28: 1773–1780CrossRefGoogle Scholar
  10. 10.
    Falk F. Ginzburg-Landau theory and solitary waves in shape memory alloys.Z Physik, 1984, 54B: 159–167Google Scholar
  11. 11.
    Falk F, Konopka P. Three-dimensional Landau theory describing the martensite phase transformation of shape memory alloys.J Phys: Condens Matter, 1990, 2: 61–77CrossRefGoogle Scholar
  12. 12.
    Friedman A, Sprekels J. Steady states of austenitic-martensitic domains in the Ginzburg-Landau theory of shape memory alloys.Continuum Mech Thermodyn, 1990, 2: 199–213MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bales GS, Gooding RJ. Interfacial dynamics at a first-order phase transition involving strain: dynamic twin formation.Phys Rev Lett, 1991, 67: 3412–3415CrossRefGoogle Scholar
  14. 14.
    Barsch GR, Krumhansl JA. Twin boundaries in ferroelastic media without interface dislocations.Phys Rev Lett, 1984, 53: 1069–1072CrossRefGoogle Scholar
  15. 15.
    Barsch GR, Krumhansl JA. Nonlinear physics in martensitic transformation. In: Olson GB and Owen NS eds. Martensite, A Tribute to Morris Cohen. ASM International, 1992. 125–147Google Scholar
  16. 16.
    Burns JA, Spies RD. A nuermical study of parameter sensitiveties in Landau-Ginzburg models of phase transitions in shape memory alloys.J Intell Mat Syst Struct, 1994, 5: 321–332Google Scholar
  17. 17.
    James RD. Displacive phase transformations in solids.J Mech Phys Solids, 1986, 34: 359–394MATHCrossRefGoogle Scholar
  18. 18.
    Fried E. Construction of two-phase equilibria in non-elliptic hyperelastic material.J of Elasticity, 1993, 31: 71–123MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Jiang Q. A continuum model for phase transformation in thermoelastic solids.J of Elasticity, 1993, 32: 61–91MATHGoogle Scholar
  20. 20.
    Abeyaratne R, Knowles JK. A continuum model of a thermoelastic solid capable of undergoing phase transition.J Mech Phys Solids, 1993, 41: 541–574MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Abeyaratne R, Kim SJ, Knowles JK. A one-dimensional continuum model for shape memory alloys.Int J Solids Struct, 1994, 31: 2229–2250MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tanaka K. A thermomechanical sketch of shape memory effect, one dimensional tensile behavior.Res Mech, 1986, 18: 251–263Google Scholar
  23. 23.
    Liang C, Rogers CA. One dimensional thermomechanical constitutive relations for shape memory materials.J Intell Mater Syst Struct, 1990, 1: 207–234Google Scholar
  24. 24.
    Zhang XD, Rogers CA, Liang C. Modelling of two-way memory effect.Philos Mag, 1992, 65A: 1199–1215Google Scholar
  25. 25.
    Brinson LC, Lammering R. Finite element analysis of the behavior of shape memory alloys and their application.Int J Solids Struct, 1993, 30: 3261–3280MATHCrossRefGoogle Scholar
  26. 26.
    Bekker A, Brinson LC. Temperature-induced phase transformation in a shape memory alloy: phase diagram based kinetics approach.J Mech Phys Solids, 1997 45: 949–988MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Patoor E, Eberhardt A, Berveiller M. Thermomechanical behavior of shape memory alloys.Arch Mech, 1988, 40: 775–794Google Scholar
  28. 28.
    Patoor E, Eberhardt A, Berveiller M. Micromechanical modelling of the shape memory behavior. In: Brinson LC, Moran B eds. Mechanics of Phase Transformations and Shape Memory Alloys, AMD-Vol. 189/PVP-Vol. 292. ASME, 1994. 23–37Google Scholar
  29. 29.
    Sun QP, Hwang KC. Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys, I: Derivation of general relations. II: Study of the individual phenomena.J Mech Phys Solids, 1993, 41: 1–17, 19–33CrossRefMATHGoogle Scholar
  30. 30.
    Sun QP, Hwang KC. Micromechanics constitutive description of thermoelastic martensitic transformation. In: Hutchison JW and Wu TY eds. Advances in Applied Mechanics, Vol. 31. New York: Academic Press, 1994, 249–298Google Scholar
  31. 31.
    Raniecki B, Lexcellent C.R L-models of pseudoelasticity and their specification for some shape memory solids.Eur J Mech, 1994, 13A: 21–33MathSciNetGoogle Scholar
  32. 32.
    Boyd JG, Logoudas DC. A thermodynamical constitutive model for shape memory materials, Part 1: The monolithic shape memory alloy.Int J Plasticity, 1996, 12: 805–842MATHCrossRefGoogle Scholar
  33. 33.
    Lu ZK, Weng G. Martensitic transformation and stress-strain relations of shape memory alloys.J Mech Phys Solids, 1997, 45: 1905–1928CrossRefGoogle Scholar
  34. 34.
    Lu ZK, Weng G. A self-consistent model for the stress strain behavior of shape memory alloy polycrystals.Acta Mater, 1998, 46: 5423–5433CrossRefGoogle Scholar
  35. 35.
    Yan WY, Sun QP, Hwang KC. A generalized micromechanics constitutive theory of single crystal with thermoelastic martensitic transformations.Science in China, 1998, 41A: 878–886CrossRefGoogle Scholar
  36. 36.
    Huang MS, Brinson LC. A multivariants model for single crystal shape memory alloy behavior.J Mech Phys Solids, 1998, 46: 1379–1409MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Siredey N, Patoor E, Berveiller M, et al. Constitutive equations for polycrystalline thermoelastic shape memory alloys. I. Intragranular interactions and behavior of grain.Int J of Solids Struct, 1999, 36: 4289–4315MATHCrossRefGoogle Scholar
  38. 38.
    Lin PH, Tobushi H, Tanaka K, et al. Pseudoelastic behaviour of TiNi shape memory alloy subjected to strain variations.J Intell Mater Syst Struct, 1994, 5: 694–701Google Scholar
  39. 39.
    Lin PH, Tobushi H, Tanaka K, et al. Deformation properties of TiNi shape memory alloy.JSME International Journal, 1996, 39A: 108–116Google Scholar
  40. 40.
    Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi.J Mech Phys Solids, 1995, 43: 1243–1281CrossRefGoogle Scholar
  41. 41.
    Shaw JA, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy.Acta Mater, 1997, 45: 683–700CrossRefGoogle Scholar
  42. 42.
    Shaw JA, Kyriakides S. Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension.Int J Plasticity, 1998, 13: 837–871CrossRefGoogle Scholar
  43. 43.
    Song CQ, Sun QP, Hwang KC. Micromechanics constitutive modeling for polycrystalline SMA. In: Argoul P et al eds. IUTAM Symposium on Variations of Domain and Free Boundary Problems in Solid Mechanics. Paris, France, 22–25, April, 1997. Dordrecht: Kluwer Academic Publisher, 1999. 25–33Google Scholar
  44. 44.
    Leo PH, Shield TW, Bruno OP. Transient heat transfer effects on the pseudoelastic behavior of shape memory wires.Acta Metall Mater, 1993, 41: 2477–2485CrossRefGoogle Scholar
  45. 45.
    Abeyaratne R, Kim SJ, Knowles JK. Continuum modeling of shape memory alloys. In: Mechanics of Phase Transformations and Shape Memory Alloys, AMD-Vol. 189/PVP-Vol. 292, ASM International, 1994. 59–69Google Scholar
  46. 46.
    Bruno OP, Leo PH, Reitich F. Free boundary conditions at austenite-martensite interface.Phys Rev Lett, 1995, 74: 746–749CrossRefGoogle Scholar
  47. 47.
    Ball JM, James RD. Fine phase mixtures as minimizers of energy.Arch Rat Mech Anal, 1987, 100: 13–52MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Bhattacharya K. Self-accommodation in matensite.Arch Rat Mech Anal, 1992, 120: 201–244MATHCrossRefGoogle Scholar
  49. 49.
    Chu CH. Hysteresis and microstructures: A study of biaxial loading on compound twins of copper-aluminum-nickel single crystals. Ph.D thesis. University of Minnesota, USA, 1993Google Scholar
  50. 50.
    Sun QP, Zhang XY, Xu TT. Some recent advances in experimental study of shape memory alloys. In: Proceedings of IUTAM Symposium on “Micro- and Macrostructural Aspects of Thermoplasticity”, Bochum, Germany, Aug 25–29, 1997. 407–416Google Scholar
  51. 51.
    Zhang XY, Sun QP, Yu SW. On the non-invariant plane model of the A-M interface in CuAlNi single crystal shape memory alloys.J Mech Phys Solids, 2000, 48: 2163–2182MATHCrossRefGoogle Scholar
  52. 52.
    Wechsler MS, Lieberman DS, Read T. On the theory of the formation of martensite.Trans Am Inst Min Eng (Trans AIME), 1953, 197: 1503–1515Google Scholar
  53. 53.
    Wayman CM. Introduction to the Crystallography of Martensite Transformations. New York: Macmillan, 1964Google Scholar
  54. 54.
    Muller I, Xu H. On the pseudoelastic hysteresis.Acta Metall Mater, 1991, 39: 263–271CrossRefGoogle Scholar
  55. 55.
    Olson GB, Cohen M. Dislocation theory of martensitic transformations. In: Nabarro FRN ed. Dislocation in Solids. North-Holland: Elsevier Science Publishers, 1986. 295–407Google Scholar
  56. 56.
    Grujicic M, Ling HC. Haezebrouck DM, et al. The growth of martensite. In: Olson GB, Owen NS eds. Martensite, A Tribute to Morris Cohen. ASM International, 1992. 175–196Google Scholar
  57. 57.
    Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions.Acta Metall, 1973, 21: 571–574CrossRefGoogle Scholar
  58. 58.
    Mura T. Micromechanics of Defects in Solids. 2nd ed. Dordrecht, Martinus Nijhoff, 1987Google Scholar
  59. 59.
    Benveniste Y. A new approach to the application of Mori-Tanaka theory in composite materials.Mech Mat 1987, 6: 147–157CrossRefGoogle Scholar
  60. 60.
    Song GQ. Study on micromechanics constitutive models for martensitic transformation materials (in Chinese). Ph D Thesis. Beijing: Tsinghua University, 1996Google Scholar
  61. 61.
    Raniecki B, Tanaka K. On the thermodynamic driving force for coherent phase transformations.Int J Engng Sci, 1994, 32: 1845–1858MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Sittner P, Hara Y, Takakura M, et al. On the general stress controlled thermoelastic martensitic transformation.Res Rep Fac Eng Mie Univ, 1994, 19: 19–24Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 2000

Authors and Affiliations

  • Song Guquan
    • 1
    • 3
  • Sun Qingping
    • 1
    • 2
  • Hwang Kehchih
    • 2
  1. 1.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyKowloonHong Kong SAR, China
  2. 2.Department of Engineering MechanicsTsinghua UniversityBeijingChina
  3. 3.Institute of Engineering MechanicsNanchang UniversityNanchangChina

Personalised recommendations