Skip to main content
Log in

Modal acoustic impedance force on a spherical source near a rigid interface

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The modal acoustic radiation load on a spherical surface undergoing angularly periodic axisymmetric harmonic vibrations while immersed in an acoustic halfspace with a rigid (infinite impedance) planar boundary is analyzed in an exact fashion using the classical technique of separation of variables. The formulation utilizes the appropriate wave field expansions, the classical method of images and the appropriate translational addition theorem to simulate the relevant boundary conditions for the given configuration. The associated acoustic field quantities such as the modal impedance matrix and the modal acoustic radiation force acting on the spherical surface are determined. The analytical results are illustrated with a numerical example in which the spherical surface, excited in vibrational modes of various orders, is immersed near an impervious rigid wall. The presented solution could eventually be used to validate those obtained by numerical approximation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudnick I. The propagation of an acoustic wave along a boundary.J Acoust Soc Am, 1947, 19: 348–356

    Article  MathSciNet  Google Scholar 

  2. Sommerfeld A. Uber die ausbreitung der wellen in der drahtlosen telegraphie.Ann Phys, 1909, 28: 665–736

    MATH  Google Scholar 

  3. Stinson MR. A note on the use of an approximate formula to predict sound fields above an impedance plane due to a point source.J Acoust Soc Am, 1995, 98(3): 1810–1812

    Article  Google Scholar 

  4. Li KM, Taherzadeh S, Attenborough K. Sound propagation from a dipole source near an impedance plane.J Acoust Soc Am, 1997, 110(6): 3343–3352

    Article  Google Scholar 

  5. Li KM, Taherzadeh S. The sound field of an arbitrarily oriented quadrupole near ground surface.J Acoust Soc Am, 1997, 110(4): 2050–2057

    Article  Google Scholar 

  6. Attenborough K, Richards TL. Solid particle motion induced by a point source above a poroelastic halfspace.J Acoust Soc Am, 1993, 86(3): 1085–1092

    Article  Google Scholar 

  7. Richards TL, Attenborough K, Heap NW, et al. Penetration of sound from a point source into a rigid porous medium.J Acoust Soc Am, 1985, 78(3): 956–963

    Article  Google Scholar 

  8. Tooms S, Taherzadeh S, Attenborough K. Sound propagation in a refracting fluid above a layered fluid-saturated porous elastic material.J Acoust Soc Am, 1993, 93(1): 173–181

    Article  Google Scholar 

  9. Sabatier JM, Bass HE, Bolen LN, et al. The interaction of airborne sound with the porous ground: The theoretical formulation.J Acoust Soc Am, 1986, 79(5): 1345–1352

    Article  Google Scholar 

  10. Hu Z, Bolton JS. Sound propagation from an arbitrary oriented multipole placed near a plane, finite impedance surface.J of Sound and Vibs, 1994, 170(5): 637–699

    Article  MATH  Google Scholar 

  11. Generalov AV. Sound field of a multipole source of order N near a locally reacting surface.Soviet Physics-Acoustics, 1987, 33(5): 492–495

    MathSciNet  Google Scholar 

  12. Hasheminejad SM. Modal impedances for a spherical source in a fluid-filled spherical cavity embedded within a fluid-infiltrated elastic porous medium.Int J Solids Structres, 1998, 35(1–2): 129–148

    Article  MATH  Google Scholar 

  13. Hasheminejad SM, Hosseini H. Radiation loading of a cylindrical source in a fluid-filled cylindrical cavity embedded within a fluid-saturated poroelastic medium.J of Appl Mech, 2002, 69(5): 675–683

    Article  MATH  Google Scholar 

  14. Achenbach JD. Wave Propagation in Elastic Solids, New York: North-Holland Publishing Co., 1976

    MATH  Google Scholar 

  15. Pierce AD. Acoustics. New York: McGraw Hill, 1981

    MATH  Google Scholar 

  16. Bies DA. Effect of a reflecting plane on an arbitrary oriented multipole.J Acoust Soc Am, 1961, 33: 286–288

    Article  MathSciNet  Google Scholar 

  17. Abramovitz M, Stegun IA. Handbook of Mathematical Functions. Washington DC: National Bureau of Standards, 1964

    Google Scholar 

  18. Friedman B, Russek J. Addition theorems for spherical waves.Quart Appl Math, 1954, 12: 13–23

    MATH  MathSciNet  Google Scholar 

  19. Stein S. Addition theorems for spherical wave functions.Q Appl Math, 1961, 19: 15–24

    MATH  Google Scholar 

  20. Ivanov YA. Diffraction of electromagnetic waves on two bodies. NASA Tech, Trans, 1970

  21. Guz AN, Golovchan VT. Diffraction of Elastic Waves in Multiply Connected Bodies. Washington DC: National Technical Information Services, US Department of Commerce, 1972

    Google Scholar 

  22. Junger MC, Feit D. Sound, Structures, and Their Interaction. Cambridge: MIT Press, 1972

    MATH  Google Scholar 

  23. Thompson IJ, Barnett AR. Modified bessel functionsI v(z) andK v(z) of real order and complex argument, to selected accuracy.Comp Phys Commun, 1987, 47: 245–257

    Article  MathSciNet  Google Scholar 

  24. Morse PM, Ingard KU. Theoretical Acoustics. New York: McGraw Hill, 1968

    Google Scholar 

  25. Hasheminejad M, Geers TL. The accuracy of doubly asymptotic approximations for an acoustic half-space.ASME J Vib Acoust, 1992, 114(4): 555–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasheminejad, S.M. Modal acoustic impedance force on a spherical source near a rigid interface. Acta Mech Sinica 19, 33–39 (2003). https://doi.org/10.1007/BF02487450

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487450

Key Words

Navigation