Ukrainian Mathematical Journal

, Volume 49, Issue 10, pp 1507–1515 | Cite as

On conditions of technical stability of controlled processes with distributed parameters

  • K. S. Matviichuk


We formulate sufficient conditions for the technical stability on given bounded and infinite time intervals and for the asymptotic technical stability of continuously controlled linear dynamical processes with distributed parameters. By using the comparison method and the method of Lagrange multipliers in combination with the Lyapunov direct method, we obtain criteria which define a set of controls providing the technical stability of the output process. We select the optimal control that realizes the least value of the norm corresponding to a given process.


Lagrange Multiplier Lyapunov Function Comparison Method Comparison System Boundary Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. A. Abgaryan, “Stability of motion on a finitie time interval”, in: Itogi VINITI, Ser. Obshchaya Mekh. [in Russian], Vol. 3, VINITI, Moscow (1976), pp. 43–127.Google Scholar
  2. 2.
    F. D. Bairamov, “Guaranteeing the technical stability of controlled systems”, in: Problems of Analytical Mechanics, Stability, and Motion Control [in Russian], Nauka, Novosibirsk (1991), pp. 134–139.Google Scholar
  3. 3.
    A. G. Butkovskii, “Control over systems with distributed parameters”, Avtomat. Telemekh, No. 11, 16–65 (1979).MathSciNetGoogle Scholar
  4. 4.
    V. I. Zubov, Dynamics of Controlled Systems [in Russian], Vyshcha Shkola, Kiev (1982).zbMATHGoogle Scholar
  5. 5.
    G. V. Kamenkov, “On stability on a finite time interval”, Prikl. Mat. Mekh., 17, Issue 5, 529–540 (1953).zbMATHMathSciNetGoogle Scholar
  6. 6.
    N. F. Kirichenko, Introduction into the Theory of Stabilization of Motion [in Russian], Vyshcha Shkola, Kiev (1978).Google Scholar
  7. 7.
    A. M. Letov, Mathematical Theory of Stabilization of Motion [in Russian], Nauka, Moscow (1987).Google Scholar
  8. 8.
    J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod Gauthier-Villars, Paris (1968).zbMATHGoogle Scholar
  9. 9.
    K. A. Lur'ye, “The Mayer-Boltz problem for multiple integrals and optimization of the behavior of systems with distributed parameters”, Prikl. Mat. Mekh., 27, Issue 5, 842–853 (1963).Google Scholar
  10. 10.
    V. M. Kuntsevich and M. M. Lychak, Synthesis of Systems of Automatic Control with the Use of Lyapunov Functions [in Russian], Nauka, Moscow (1977).Google Scholar
  11. 11.
    T. K. Sirazetdinov, Stability of Systems with Distributed Parameters [in Russian], Kazan' University, Kazan' (1971).Google Scholar
  12. 12.
    K. S. Matviichuk, “On the comparison method for differential equations close to hyperbolic ones”, Differents. Uravn., 20, No. 11, 2009–2011 (1984).Google Scholar
  13. 13.
    K. S. Matviichuk, “Technical stability of parametrically perturbed distributed processes”, Prikl. Mat. Mekh., 50, Issue 2, 210–218 (1986).MathSciNetGoogle Scholar
  14. 14.
    K. S. Matviichuk, “On the technical stability of a system of automatic control with varying structure”, Prikl. Mekh., 30, No. 10, 74–78 (1994).MathSciNetGoogle Scholar
  15. 15.
    J. Szarski, Differential Inequalities, PWN, Warszawa (1967).zbMATHGoogle Scholar
  16. 16.
    N. A. Kil'chevskii, A Course of Theoretical Mechanics [in Russian], Vol. 1, Nauka, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • K. S. Matviichuk

There are no affiliations available

Personalised recommendations