Ukrainian Mathematical Journal

, Volume 49, Issue 10, pp 1494–1500 | Cite as

Groups of finite non-Abelian sectional rank

  • O. Yu. Dashkova
Article
  • 14 Downloads

Abstract

We study non-Abelian locally finite groups and non-Abelian locally solvable groups of finite non-Abelian sectional rank and prove that their (special) rank is finite.

Keywords

Normal Subgroup Finite Group Local System Nilpotent Group Quotient Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Yu. Dashkova, “Locally nilpotent groups of finite non-Abelian sectional rank”, Ukr. Mat. Zh., 47, No. 4, 452–455 (1995).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    O. Yu. Dashkova, “Solvable groups of finite non-Abelian sectional rank,” Ukr. Mat. Zh., 48, No. 3, 418–421 (1996).CrossRefMathSciNetGoogle Scholar
  3. 3.
    B. Hartley, “Finite groups of automorphisms of locally soluble groups”, J. Algebra, 57, No. 1, 242–257 (1979).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. I. Zaitsev, “On locally solvable groups of finite ranks”, Dokl. Akad. Nauk SSSR, 240, No. 2, 257–259 (1978).MathSciNetGoogle Scholar
  5. 5.
    V. P. Shunkov, “On locally finite groups with minimum condition for Abelian subgroups”, Algebra Logika, 9, No. 5, 579–615 (1970).Google Scholar
  6. 6.
    O. Yu. Dashkova, “Solvable groups of finite non-Abelian rank,” Ukr. Mat. Zh., 42, No. 2, 159–164 (1990).CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Hall, Theory of Groups [Russian translation], Inostrannaya Literatura Moscow (1968).Google Scholar
  8. 8.
    V. V. Belyaev, “Locally finite groups with Chernikov Sylow p-subgroups”, Algebra Logika, 20, No. 6, 605–619 (1981).MATHMathSciNetGoogle Scholar
  9. 9.
    I. I. Pavlyuk and V. P. Shunkov, “On locally finite groups with min-p condition for all p”, in: Abstracts of the VIIth All-Union Symposium on the Theory of Groups [in Russian], Krasnoyarsk University, Krasnoyarsk (1980), pp. 84–85.Google Scholar
  10. 10.
    O. Yu. Dashkova, Groups of Finite Metabelian Rank [in Russian], Preprint No. 90. I, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1990).Google Scholar
  11. 11.
    O. Yu. Dashkova, “Locally almost solvable groups of finite non-Abelian rank” Ukr. Mat. Zh., 42, No. 4, 477–482 (1990).CrossRefMathSciNetGoogle Scholar
  12. 12.
    P. H. Kropholler, “On finitely generated soluble groups with no large wreath products sections”, Proc. London Math. Soc., 49, No. 1, 155–169 (1984).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. J. S. Robinson, “A note on groups of finite rank,” Compos. Math., 31, No. 2, 240–246 (1969).Google Scholar
  14. 14.
    D. I. Zaitsev, “On the theory of minimax groups,” Ukr. Mat. Zh., 23, No. 5, 652–660 (1971).MathSciNetGoogle Scholar
  15. 15.
    V. S. Charin, “On solvable groups of A4 type,” Mat. Sb., 53, No. 3, 895–914 (1960).Google Scholar
  16. 16.
    N. N. Myagkova, “On groups of finite rank,” Izv. Akad. Nauk SSSR, Ser. Mat., 13, No. 6, 495–512 (1949).MATHMathSciNetGoogle Scholar
  17. 17.
    O. Yu. Dashkova, Groups of Finite Non-Abelian Rank [in Russian], Author's Abstract of Candidate-Degree Thesis (Physics and Mathematics). Novosibirsk (1990).Google Scholar
  18. 18.
    A. G. Kurosh, Theory of Groups [in Russian] Nauka, Moscow (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • O. Yu. Dashkova

There are no affiliations available

Personalised recommendations