Advertisement

Ukrainian Mathematical Journal

, Volume 50, Issue 4, pp 519–532 | Cite as

Classification of maximal subalgebras of rank n of the conformal algebra AC(1, n)

  • A. F. Barannik
  • I. I. Yurik
Article

Abstract

We obtain a complete classification of I-maximal subalgebras of rank n of the conformal algebra AC(1, n).

Keywords

Nonlinear Wave Equation Invariant Solution Connected Subgroup Conjugation Relation Maximal Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Fushchich, L. F. Barannik, and A. F. Barannik, Subgroup Analysis of Galilei and Poincaré Groups and the Reduction of Nonlinear Equations [in Russian], Naukova Dumka, Kiev (1991).zbMATHGoogle Scholar
  2. 2.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).zbMATHGoogle Scholar
  3. 3.
    V. I. Fushchich and A. F. Barannik, “Maximal subalgebras of rank n - 1 of the algebra AP(1, n) and the reduction of nonlinear wave equations. I,” Ukr. Mat. Zh., 42, No. 11, 1250–1256 (1990).CrossRefMathSciNetGoogle Scholar
  4. 4.
    V. I. Fushchich and A. F. Barannik, “Maximal subalgebras of rank n - 1 of the algebra AP(1, n) and the reduction of nonlinear wave equations. II,” Ukr. Mat. Zh., 42, No. 12, 1693–1700 (1990).CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. F. Barannik, V. A. Marchenko, and V. I. Fushchich, “On the reduction and exact solutions of nonlinear multidimensional Schrödinger equations,” Teor. Mat. Fiz., 87, No. 2, 220–234 (1991).MathSciNetGoogle Scholar
  6. 6.
    A. F. Barannik, L. F. Barannik, and V. I. Fushchich, “Reduction of a general wave equation to two-dimensional equations,” Ukr. Mat. Zh., 43, No. 10, 1311–1323 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. S. Taufik, “On semisimple subalgebras of pseudounitary Lie algebras,” in: Geometric Methods in Problems of Algebra and Analysis [in Russian], Yaroslavl’ University, Yaroslavl’ (1980), pp. 86–115.Google Scholar
  8. 8.
    A. F. Barannik, L. F. Barannik, and V. I. Fushchich, “Connected subgroups of the conformai group C(l, 4),” Ukr. Mat. Zh., 43, Nos. 7-8, 870–884 (1991).MathSciNetGoogle Scholar
  9. 9.
    N. Jacobson, Lie Algebras, Interscience Publishers, New York (1960).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. F. Barannik
    • 1
  • I. I. Yurik
    • 2
  1. 1.Pedagogic UniversitySlupskPoland
  2. 2.Ukrainian State University of Food TechnologyKiev

Personalised recommendations