Ukrainian Mathematical Journal

, Volume 49, Issue 9, pp 1409–1422 | Cite as

On estimates of approximation characteristics of the Besov classes of periodic functions of many variables

  • A. S. Romanyuk
Article

Abstract

We obtain order estimates for some approximate characteristics of the Besov classes B p,ϑ r of periodic functions of many variables.

Keywords

Periodic Function Lower Estimate Trigonometric Polynomial Approximation Characteristic Bilinear Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Romanyuk, “Best trigonometric and bilinear approximations of functions of many variables from the classes B p,ϑr. I,” Ukr. Mat. Zh., 44, No. 11, 1535–1547 (1992).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. S. Romanyuk, “On approximation of the Besov classes of functions of many variables by partial sums with the given number of harmonics”, in: Optimization of Approximation Methods [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1992), pp. 70–78.Google Scholar
  3. 3.
    A. S. Romanyuk, “Best trigonometric and bilinear approximations of functions of many variables from the classes B p,ϕr. II,” Ukr. Mat. Zh., 45, No. 10, 1411–1423 (1993).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. S. Romanyuk, “On the best trigonometric and bilinear approximations of the Besov classes of functions of many variables,” Ukr. Mat. Zh., 47, No. 8, 1097–1111 (1995).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    V. N. Temlyakov “Approximation of functions with a bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178 (1986).Google Scholar
  6. 6.
    S. M. Nikol'skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian] Nauka, Moscow (1969).Google Scholar
  7. 7.
    A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge University Press, Cambridge (1959).MATHGoogle Scholar
  8. 8.
    V. N. Temlyakov “Estimates for asymptotic classes of functions with a bounded mixed derivative or difference,” Tr. Mat. Inst. Akad. Nauk SSSR, 189 138–168 (1988).MathSciNetGoogle Scholar
  9. 9.
    I. R. Liflyand, “The exact order of the Lebesgue constants of hyperbolic partial sums of multiple Fourier series,” Mat. Zametki, 39, No. 5, 674–683 (1986).MathSciNetGoogle Scholar
  10. 10.
    A. S. Romanyuk, “Approximation of the Besov classes of periodic functions of many variables in the space L q,” Ukr. Mat. Zh., 43, No. 10, 1398–1408 (1991).CrossRefMathSciNetGoogle Scholar
  11. 11.
    V. N. Temlyakov, “Approximation of periodic functions of many variables by trigonometric polynomials and widths of some classes of functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 49, No. 5 986–1030 (1985).MathSciNetGoogle Scholar
  12. 12.
    A. S. Romanyuk, “On the best trigonometric approximations and the Kolmogorov widths of the Besov classes of functions of many variables,” Ukr. Mat. Zh., 45, No. 5, 663–675 (1993).CrossRefMathSciNetGoogle Scholar
  13. 13.
    V. S. Kashin and V. N. Temlyakov, “On the best m-term approximations and entropy of sets in the space L 1”. Mat. Zametki, 56, No. 5, 57–86 (1994).MathSciNetGoogle Scholar
  14. 14.
    S. Belinskii, “Approximation by a ‘floating’ system of exponents on classes of smooth periodic functions,” Mat. Sb., 132, No. 1, 20–27 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. S. Romanyuk

There are no affiliations available

Personalised recommendations