Ukrainian Mathematical Journal

, Volume 49, Issue 4, pp 590–594 | Cite as

On structural transformations of equations of perturbed motion for a certain class of dynamical systems

  • V. N. Koshlyakov
Article

Abstract

We consider a general method for structural transformations of one class of dynamical systems with gyroscopic forces, which enables us to remove gyroscopic terms from the original equations of perturbed motion. Without changing the qualitative properties of these equations, this method simplifies their investigation.

Keywords

Matrix Equation Structural Transformation Original Equation Nonconservative Force Gyroscopic Force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics [in Russian], Academy of Sciences of the Ukrainian SSR, Kiev (1945).Google Scholar
  2. 2.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).MATHGoogle Scholar
  3. 3.
    E. A. Grebennikov, Averaging Method in Applied Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  4. 4.
    V. F. Zhuravlev and D. M. Klimov, Applied Methods in Oscillation Theory [in Russian], Nauka, Moscow (1988).Google Scholar
  5. 5.
    H. G. Chetaev, Stability of Motion [in Russian], Nauka, Moscow (1955).Google Scholar
  6. 6.
    V. N. Koshlyakov, Problems of Dynamics of Solid Bodies and Applied Theory of Gyroscopes. Analytic Methods [in Russian], Nauka, Moscow (1985).Google Scholar
  7. 7.
    B. V. Bulgakov, “On normal coordinates,” Prikl. Mat. Mekh., 10, Issue 2, 273–290 (1946).MATHMathSciNetGoogle Scholar
  8. 8.
    Yu. A. Mitropol’skii, Problems of the Asymptotic Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1964).Google Scholar
  9. 9.
    D. R. Merkin, Introduction to the Theory of Stability of Motion [in Russian], Nauka, Moscow (1987).MATHGoogle Scholar
  10. 10.
    V. A. Yakubovich and V. M. Starzhinskii, Parametric Resonance in Linear Systems [in Russian], Nauka, Moscow (1987).MATHGoogle Scholar
  11. 11.
    V. N. Koshlyakov, “On stability of motion of a symmetric body placed on a vibrating base,” Ukr. Mat. Zh., 47, No. 12, 1661–1666 (1995).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. N. Koshlyakov

There are no affiliations available

Personalised recommendations