Ukrainian Mathematical Journal

, Volume 49, Issue 1, pp 181–196 | Cite as

Symmetry of equations of linear and nonlinear quantum mechanics

  • V. I. Fushchych


We describe local and nonlocal symmetries of linear and nonlinear wave equations and present a classification of nonlinear multidimensional equations compatible with the Galilean principle of relativity. We propose new systems of nonlinear equations for the description of physical phenomena in classical and quantum mechanics.


Quantum Mechanic Dirac Equation Lorentz Transformation Galilean Transformation Nonlocal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow, 1974.MATHGoogle Scholar
  2. 2.
    E. Schrödinger, “Quantisierung als eigenwertprobleme,” Annalen der Physik, 81, 109–139 (1926).CrossRefGoogle Scholar
  3. 3.
    W. Fushchych, W. Shtelen, and N. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer, Dordrecht (1993).Google Scholar
  4. 4.
    W. Fushchych and A. Nikitin, Symmetries of Equations of Quantum Mechanics, Allerton Press (1994).Google Scholar
  5. 5.
    W. Fushchych, “How to extend symmetry of differential equations,” in: Symmetry and Solutions of Nonlinear Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987), pp. 4–16.Google Scholar
  6. 6.
    W. Fushchych and R. M. Cherniha, “The Galilean principle of relativity and nonlinear partial differential equations,” J. Phys. A: Math. Gen., 18, 3491–3503 (1985).CrossRefGoogle Scholar
  7. 7.
    W. Fushchych, “Symmetry in problems of mathematical physics,” in: Algebraic-Theoretic Studies in Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1981), pp. 6–44.Google Scholar
  8. 8.
    W. Fushchych and Yu. Seheda, “On a new invariance algebra for the free Schrödinger equation,” Dokl. Akad. Nauk SSSR, 232, No. 4, 800–801 (1977).Google Scholar
  9. 9.
    W. Fushchych, “Group properties of equations of quantum mechanics,” in: Asymptotic Problems in the Theory of Nonlinear Oscillations [in Russian], Naukova Dumka, Kiev (1977), p. 75.Google Scholar
  10. 10.
    W. Fushchych and A. Nikitin, “Group invariance for a quasirelativistic equation of motion,” Dokl. Akad. Nauk SSSR, 238, No. 1, 46 (1978).MathSciNetGoogle Scholar
  11. 11.
    W. Fushchych and M. Serov, “One some exact solutions of the three-dimensional nonlinear Schrödinger equation,” J. Phys. A: Math. Gen., 20, No. 6, L929 (1987).CrossRefGoogle Scholar
  12. 12.
    W. Fushchych and V. Boiko Continuity equation in nonlinear quantum mechanics and the Galilean principle of relativity,” Nonlin. Math. Phys., 4, No. 1-2, 124–128 (1997).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    W. Fushchych and Z. Symenog, “High-order equations of motion in quantum mechanics and Galliean relativity,” J. Phys. A: Math. Gen., 30, L5 (1997).CrossRefGoogle Scholar
  14. 14.
    R. Schiller, “Quasiclassical transformation theory,” Phys. Rev., 125, No. 3, 1109 (1962).CrossRefMathSciNetGoogle Scholar
  15. 15.
    N. Rosen, “The relation between classical and quantum mechanics,” Amer. J. Phys., 32, 597–600 (1965).CrossRefGoogle Scholar
  16. 16.
    Ph. Guéret and J.-P. Vigier, “Relativistic wave equation with quantum potential nonlinearity,” Lett. Nuovo Cimento, 35, 125–128 (1983).CrossRefGoogle Scholar
  17. 17.
    F. Guerra and M. Pusterla, “Nonlinear Klein-Gordon equation carrying a nondispersive solitolike singularity,” Lett. Nuovo Cimento, 35, 256–259 (1982).CrossRefMathSciNetGoogle Scholar
  18. 18.
    H.-D. Doebner and G. A. Goldin, “Properties of nonlinear Schrödinger equations associted with diffeomorphisms group representations,” J. Phys. A: Math. Gen., 27, 1771–1780 (1994).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    W. Fushchych, R. Cherniha, and V. Chopyk, “On unique symmetry of two nonlinear generalization of the Schrödinger equation,” J. Nonlin. Math. Phys., 3, No. 3-4, 296–301 (1996).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    W. Fushchych, “On additional invariance of the Klein-Gordon-Fock equation,” Dokl. Akad. Nauk SSSR, 230, No. 3, 570–573 (1976).MathSciNetGoogle Scholar
  21. 21.
    W. Fushchych, “New nonlinear equations of electromagnetic fields whose velocities differ from c,” Dokl. Akad. Nauk Ukr., No. 4, 24–27 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. I. Fushchych

There are no affiliations available

Personalised recommendations