Acta Mechanica Sinica

, 18:480 | Cite as

Effect of triaxial stress constraint on the deformation and fracture of polymers

  • Wang Tiejun
  • Kikno Kishimoto
  • Mitsuo Notomi


One purpose of this paper is to give a brief overview on the research status of deformation, fracture and toughening mechanisms of polymers, including experimental, theoretical and numerical studies. Emphasis is on the more recent progresses of micromechanics of rubber particle cavitation and crazing, and the development of fracture criteria for ductile polymers.

The other purpose is to study the effect of triaxial stress constraint on the deformation and fracture behavior of polymers. Polycarbonate (PC), acrylonitrile-butadienestyrene (ABS) and PC/ABS alloy are considered in this investigation. A series of circumferentially blunt-notched bars are used to experimentally generate different triaxial stress fields. The fracture surfaces of specimens with different notch radius are examined by scanning electron microscope (SEM) to study the fracture and toughening mechanisms of polymer alloy. It is shown that the triaxial stress constraint has a significant effect on the deformation, fracture and toughening of PC, ABS and PC/ABS alloy. We will also discuss the extent to which a micromechanics criterion proposed by the first author can serve as a fracture criterion for ductile polymers. A new ductile fracture parameter is emphasized, which can be employed to evaluate the fracture ductility of polymers. Stress state independence of the parameter for the PC, ABS and PC/ABS alloy has been experimentally verified.

Key Words

deformation fracture toughening cavitation craze micromechanics PC ABS polymer alloy 


  1. 1.
    Anderson TL. Fracture Mechanics—Fundamentals and Applications. Florida: CRC Press, Inc., 1995MATHGoogle Scholar
  2. 2.
    Williams JG. Fracture Mechanics of Polymers. Chichester: Ellis Horwood Ltd., 1984Google Scholar
  3. 3.
    Cheng C, Hiltner A, Baer E, et al. Deformation of rubber-toughened polycarbonate: macroscale analysis of the damage zone.J Appl Polymer Sci, 1994, 52(2): 177–193CrossRefGoogle Scholar
  4. 4.
    Cheng C, Hiltner A, Baer E, et al. Deformation of rubber-toughened polycarbonate: microscale and nanoscale analysis of the damage zone.J Appl Polymer Sci, 1995, 55(12): 1691–1702CrossRefGoogle Scholar
  5. 5.
    Greco R, Sorrentino A. Polycarbonate/ABS blends: a literature review.Advances in Polymer Technology, 1994, 13(4): 249–258CrossRefGoogle Scholar
  6. 6.
    Guild FJ, Kinloch AJ. Modelling the properties of rubber-modified epoxy polymers.J Mater Sci, 1995, 30(7): 1689–1697CrossRefGoogle Scholar
  7. 7.
    Bernal CR, Frontini PM, Sforza M, et al. Microstructure, deformation, and fracture behavior of commerical ABS resins.J Appl Polymer Sci, 1995, 58(1): 1–10CrossRefGoogle Scholar
  8. 8.
    Wang TJ, Kishimoto K, Notomi M. A micromechanics criterion for the ductile fracture of a polycarbonate.Key Engineering Materials, 2000, 183(1): 121–126Google Scholar
  9. 9.
    Notomi M, Kishimoto K, Wang TJ, et al. Tensile and fracture behaviors of PC/ABS polymer alloy.Key Engineering Materials, 2000, 183(1): 779–784CrossRefGoogle Scholar
  10. 10.
    Husaini, Kishimoto K, Notomi M, et al. Fracture behaviour of PC/ABS resin under mixed-mode loading.Fatigue Fracture Engineering Materials Structures, 2001, 24(12): 895–903CrossRefGoogle Scholar
  11. 11.
    Lombardo BS, Keshhula H, Paul DR. Influence of ABS type on morphology and mechanical properties of PC/ABS blends.J Appl Polymer Sci, 1994, 54(11): 1697–1720CrossRefGoogle Scholar
  12. 12.
    Kayano Y, Keskkula H, Paul DR. Fracture behavior of polycarbonate blends with a core-shell impact modifier.Polymer, 1998, 39(4): 821–834CrossRefGoogle Scholar
  13. 13.
    Schemer B, Kuriyama T, Narisawa I, et al. Simulation of the deformation behavior and the fracture process of rubber toughened polycarbonate.J Mater Sci Letters, 1995, 14(9): 660–664CrossRefGoogle Scholar
  14. 14.
    Pearson RA, Yee AF. Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies.J Mater Sci, 1991, 26(14): 3828–3844CrossRefGoogle Scholar
  15. 15.
    Yee AF, Pearson RA. Toughening mechanisms in elastomer-modified epoxies.J Mater Sci, 1986, 21(7): 2462–2488CrossRefGoogle Scholar
  16. 16.
    Qian YJ, Pearson RA, Dimomie VL, et al. The role of dispersed phase morphology on toughening of epoxies.Polymer, 1997, 38(1): 21–30CrossRefGoogle Scholar
  17. 17.
    Bucknall CB, Karpodinis A, Zhang XC. A model for particle cavitation in rubber-toughened plastics.J Mater Sci, 1994, 29(13): 3377–3383CrossRefGoogle Scholar
  18. 18.
    Wu S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening.Polymer, 1985, 26(12): 1855–1867CrossRefGoogle Scholar
  19. 19.
    Wu S. A generalized criterion for rubber toughening: the critical matrix ligament thickness.J Appl Polymer Sci, 1988, 35(2): 549–561CrossRefGoogle Scholar
  20. 20.
    Tse A, Shin E, Hiltner A, et al. Damage zone development in PVC under a multiaxial tensile stress state.J Mater Sci, 1991, 26(19): 5374–5382CrossRefGoogle Scholar
  21. 21.
    Rice JR, Tracey DM. On the ductile enlargement of void in triaxial stress fields.J Mech Phys Solids, 1969, 17(2): 201–217CrossRefGoogle Scholar
  22. 22.
    Hancock JW, Machenzie AC. On the mechanisms of ductile failure in high-strength steels subjected a multi-axial stress-states.J Mech Phys Solids, 1976, 24(2): 147–169CrossRefGoogle Scholar
  23. 23.
    Lemaitre J. A continuum damage mechanics model for ductile fracture.J Eng Mater Technol, 1985, 107(1): 83–889CrossRefGoogle Scholar
  24. 24.
    Wang TJ. Unified CDM model and local criterion for ductile fracture-I.Eng Fracture Mech, 1992, 42(1): 177–183CrossRefGoogle Scholar
  25. 25.
    Wang TJ. Unified CDM model and local criterion for ductile fracture-II.Eng Fracture Mech, 1992, 42(1): 185–192CrossRefGoogle Scholar
  26. 26.
    Wang TJ. Further investigation of a new continuum damage mechanics criterion for ductile fracture: experimental verification and application.Eng Fracture Mech, 1994, 48(2): 217–230CrossRefGoogle Scholar
  27. 27.
    Wang TJ. A new ductile fracture theory and its applications.Acta Mechanica Sinica, 1995, 11(1): 83–93CrossRefGoogle Scholar
  28. 28.
    Wang TJ, Kuang ZK. New post-yield fracture toughness parameters for engineering materials.ASME J Pre Ves Technol, 1995, 117(4): 395–398Google Scholar
  29. 29.
    Huang Y, Kinloch AJ. Modelling of the toughening mechanisms in rubber-modified epoxy polymers.J Mater Sci, 1992, 27(10): 2753–2769CrossRefGoogle Scholar
  30. 30.
    Fukui T, Kikuchi Y, Inoue T. Elastic-plastic analysis of the toughening mechanism in rubbermodified nylon: matrix yielding and cavitation.Polymer, 1991, 32(13): 2367–2371CrossRefGoogle Scholar
  31. 31.
    Chen XH, Mai YW. Micromechanics of rubber-toughened polymers.J Materials Science, 1998, 33(14): 3529–3539CrossRefGoogle Scholar
  32. 32.
    Tzika PA, Boyce MC, Parks DM. Micromechanics of deformation in particle-toughened polyamides.J Mech Phys Solids, 2000, 48(9): 1893–1929MATHCrossRefGoogle Scholar
  33. 33.
    Socrate S, Boyce MC. Micromechanics of toughened polycarbonate.J Mech Phys Solids, 2000, 48(2): 233–273MATHCrossRefGoogle Scholar
  34. 34.
    Danielsson M, Parks DM, Boyce MC. Three-dimensional micromechanical modeling of voided polymeric materials.J Mech Phys Solids, 2002, 50(2): 351–379MATHCrossRefGoogle Scholar
  35. 35.
    Donald AM, Kramer EJ. The mechanism for craze-tip advance in glassy polymers.Philosophical Magazine A, 1981, 43(4): 857–870Google Scholar
  36. 36.
    Kambour RP. A review of crazing and fracture in thermoplastics.J Polymer Science, 1973, 7(1): 1–154Google Scholar
  37. 37.
    Kramer EJ. Microscopic and molecular fundamentals of crazing.Adv Polymer Science, 1983, 52(1): 1–56Google Scholar
  38. 38.
    Kramer EJ, Berger LL. Craze growth and fracture.Adv Polymer Science, 1990, 91(1): 1–68CrossRefGoogle Scholar
  39. 39.
    Estevez R, Tijssens MGA, Van der Giessen E. Modelling of the competition between shear yielding and crazing in glassy polymers.J Mech Phys Solids, 2000, 48(12): 2585–2617MATHCrossRefGoogle Scholar
  40. 40.
    Ishikawa M, Takahashi H. Crazing mechanism based on plastic instability.J Mater Science, 1991, 26(5): 1295–1300CrossRefGoogle Scholar
  41. 41.
    Hui CY, Ruina A, Creton C, et al. Micromechanics of crack growth into a craze in a polymer glass.Macromolecules, 1992, 25(15): 3948–3955CrossRefGoogle Scholar
  42. 42.
    Xiao ZM, Lim MK, Liew KM. Micromechanics analysis of crazing phenomenon in polymers.J Materials Processing Technology, 1995, 48(1–4): 437–443CrossRefGoogle Scholar
  43. 43.
    Marissen R. Craze growth mechanics.Polymer, 2000, 41(3): 1119–1129CrossRefGoogle Scholar
  44. 44.
    Tijssens MGA, Van der Giessen E, Sluys LJ. Modeling of crazing using a cohesive surface methodology.Mechanics of Materials, 2000, 32(1): 19–35CrossRefGoogle Scholar
  45. 45.
    Lai J, Van der Giessen E. A numerical study of crack-tip plasticity in glassy polymers.Mechanics of Materials, 1997, 25(3): 183–197CrossRefGoogle Scholar
  46. 46.
    Socrate S, Boyce MC, Lazzeri A. A micromechanical model for multiple crazing in high impact polystyrene.Mechanics of Materials, 2001, 33(3): 155–175CrossRefGoogle Scholar
  47. 47.
    Narisawa I, Takemori MT. Fracture toughness of impact-modified polymers based on theJ-integral.Polymer Eng Science, 1989, 29(10): 671–678CrossRefGoogle Scholar
  48. 48.
    Levita G, Parisi L, Marchetti A. The work of fracture in semiductile polymers.J Mater Science, 1994, 29(17): 4545–4553CrossRefGoogle Scholar
  49. 49.
    Mai YW, Powell P. Essential work of fracture andJ-integral measurements for ductile polymers.J Polymer Science, Part B: Polymer Physics, 1991, 29(7): 785–793CrossRefGoogle Scholar
  50. 50.
    Wu JS, Mai YW, Cotterell B. Fracture toughness and fracture mechanisms of PBT/PC/IM blend.J Mater Science, 1993, 28(12): 3373–3384CrossRefGoogle Scholar
  51. 51.
    Wu JS, Mai YW. The essential fracture work concept for toughness measurement of ductile polymers.Polymer Engineering and Science, 1996, 36(18): 2275–2287CrossRefGoogle Scholar

Copyright information

© Chinese Journal of Mechanics Press 2002

Authors and Affiliations

  • Wang Tiejun
    • 1
  • Kikno Kishimoto
    • 2
  • Mitsuo Notomi
    • 3
  1. 1.Department of Engineering MechanicsXi'an Jiaotong UniversityXi'anChina
  2. 2.Department of Mechanical and Control EngineeringTokyo Institute of TechnologyTokyoJapan
  3. 3.Department of Mechanical EngineeringMeiji UniversityKawasaki-shi, KanagawaJapan

Personalised recommendations